
Semantic Web in Depth:
Web Ontology Language
(OWL)
Dr Nicholas Gibbins
32/3019
nmg@ecs.soton.ac.uk

Introducing OWL

• For many, RDF Schema is a
sufficiently expressive
ontology language
• However, there are use

cases which require a more
expressive formalism:
•  Instance classification
•  Consistency checking
•  Subsumption reasoning

•  Necessary and sufficient conditions for class membership
•  Property restrictions
•  Local range, cardinality, value constraints

•  Equivalence and identity relations
•  Property characteristics
•  Transitive, symmetric, functional

•  Complex classes
•  Set operators, enumerated classes, disjoint classes

OWL Feature Summary

•  Two versions of OWL:
•  OWL 1.0 (became Recommendation on 10 Feb 2004)
•  OWL 2 (became Recommendation on 29 Oct 2009)

•  OWL 2 is more expressive than OWL 1.0, and takes
advantage of developments in DL reasoning techniques in
the intervening time

•  We will initially concentrate on OWL 1.0

OWL Versions

Brachman, R. J., and H. J. Levesque. (1984). The tractability of
subsumption in frame-based description languages. In Proceedings of the
4th National Conference of the American Association for Artificial
Intelligence (AAAI-84). Austin, TX, pp. 34-37.

•  Different subsets of OWL features give rise to the following
sublanguages (colloquially known as species):
•  OWL Lite
•  OWL DL
•  OWL Full

•  “There is a tradeoff between the expressiveness of a
representation language and the difficulty of reasoning over
the representations built using that language.”

OWL 1.0 Species

OWL 1.0 Species

RDF(S)

OWL Lite

OWL DL

OWL Full

Increasing
expressivity

Increasing
complexity

•  Description Logic-based
•  SHIF(D)

•  Less complex reasoning at the expense of less expressive
language
•  No enumerated classes, set operators, or disjoint classes
•  Restricted cardinality restrictions

(values of 0 or 1 – required, permitted and excluded)
•  No value restrictions
•  equivalentClass/subClassOf cannot be applied to class expressions

OWL Lite

•  Description Logic-based
•  SHOIN(D)
•  Complete and decidable
•  Higher worst-case complexity than OWL Lite

•  Supports all OWL constructs, with some restrictions
•  Properties that take datatype values cannot be marked as inverse

functional
•  Classes, properties, individuals and datatype values are disjoint

OWL DL

•  No restrictions on use of language constructs
•  All OWL DL and RDFS constructs

•  Potentially undecidable

OWL Full

OWL 1.0 Features and Syntax

•  Ontology header for metadata

Ontology header

<owl:Ontology rdf:about=“”>
 <owl:versionInfo>1.4</owl:versionInfo>
 <rdfs:comment>An example ontology</rdfs:comment>
 <owl:imports
 rdf:resource="http://www.example.org/base"/>
</owl:Ontology>

•  Version properties used in the ontology header
•  owl:versionInfo
•  Version number, etc

•  owl:priorVersion
•  Indicates that an ontology is a previous version of this

•  owl:backwardCompatibleWith
•  Indicates that the specified ontology is a previous version of this one, and

that this is compatible with it
•  owl:incompatibleWith
•  Indicates that the specified ontology is a previous version of this one, but

that this is incompatible with it

Versioning support

•  Classes and properties may be marked as deprecated
•  owl:DeprecatedClass
•  owl:DeprecatedProperty

Versioning support

•  owl:Class
•  Distinct from rdfs:Class – needed for OWL Lite/DL

•  owl:Thing (⊤)
•  The class that includes everything

•  owl:Nothing (⊥)
•  The empty class

OWL class types

•  owl:ObjectProperty
•  The class of resource-valued properties

•  owl:DatatypeProperty
•  The class of literal-valued properties

•  owl:AnnotationProperty
•  Used to type properties which annotate classes and properties

(needed for OWL Lite/DL)

OWL property types

•  Recall that the semantics of a description logic is specified by
interpretation functions which map:
•  Instances to members of the domain of discourse
•  Classes to subsets of the domain of discourse
•  Properties to sets of pairs drawn from the domain of discourse

•  Reflexive definitions of RDF Schema means that some resources are
treated as both classes and instances, or instances and properties

•  Ambiguous semantics for these resources
•  Can’t tell from context whether they’re instances or classes
•  Can’t select the appropriate interpretation function

•  The introduction of owl:Class, owl:ObjectProperty and
owl:DatatypeProperty eliminates this ambiguity

OWL versus RDF Schema

OWL’s Dirty Secret

RDF(S)

OWL Lite

OWL DL

OWL Full

OWL’s Dirty Secret Uncovered

OWL Lite

OWL DL

OWL Full

RDF(S)

RDF(S)’

•  Class expression formed by constraints on properties
•  Local cardinality constraints

 ≤ n R, ≥ n R, = n R
•  Local range constraints

 ∃R.C, ∀R.C
•  Local value constraints

 ∃R.{x}

•  Key concept in OWL

OWL restrictions

OWL restriction format

<owl:Restriction>
 <owl:onProperty rdf:resource=“property”/>
 constraint expression
</owl:Restriction>

•  Defines a class based on the number of values taken by a property
•  owl:minCardinality (≥ n R)
•  “property R has at least n values”

•  owl:maxCardinality (≤ n R)
•  “property R has at most n values”

•  owl:cardinality (= n R)
•  “property R has exactly n values”

•  OWL Lite has restricted cardinalities

Local cardinality constraints

•  Single malt whiskies are whiskies which are distilled by one
and only one thing

Local cardinality constraints

<owl:Class rdf:about=“#SingleMaltWhisky”>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about=“#Whisky”/>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#distilledBy”/>
 <owl:cardinality>1</owl:cardinality>
 </owl:Restriction>
 </owl:intersectionOf>
 <owl:Class>
 </owl:equivalentClass>
</owl:Class>

•  Defines a class based on the type of property values
•  Distinct from global range constraint (rdfs:range) in RDF Schema
•  owl:someValuesFrom (∃R.C)
•  “there exists a value for property R of type C”

•  owl:allValuesFrom (∀R.C)
•  “property R has only values of type C”

•  Can only be used with named classes or datatypes in OWL Lite

Local range constraints

•  Carnivores are things which eat some things which are
animals (∃eats.Animal)

Local range constraints

<owl:Class rdf:about=“#Carnivore”>
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#eats”/>
 <owl:someValuesFrom rdf:resource=“#Animal”/>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

•  Vegetarians are things which eat only things which are
plants (∀eats.Plant)

Local range constraints

<owl:Class rdf:about=“#Vegetarian”>
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#eats”/>
 <owl:allValuesFrom rdf:resource=“#Plant”/>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

•  Defines a class based on the existence of a particular
property value

•  owl:hasValue (∃R.{x})
•  “property R has a value which is X”

•  Cannot be used in OWL Lite

Local value constraints

<owl:Class rdf:about=“#GreenThing”>
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“#hasColour”/>
 <owl:hasValue rdf:resource=“#Green”/>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

•  Green things are things which are coloured green
 (∃ R. { Green })

Local value constraints

•  owl:intersectionOf (C ⊓ D)
•  owl:unionOf (C ⊔ D)
•  owl:complementOf (¬ C)

•  Restrictions on use with OWL Lite
•  owl:unionOf and owl:complementOf cannot be used
•  owl:intersectionOf can be used with named classes (not bNodes) and

OWL restrictions only

Set constructors

Set constructors example

<owl:Class rdf:about=“GreenApple”>
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType=“Collection”>
 <owl:Class rdf:about=“Apple”>
 <owl:Restriction>
 <owl:onProperty rdf:resource=“hasColor”/>
 <owl:hasValue rdf:resource=“Green”/>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>
</owl:Class>

•  Useful for ontology mapping
•  owl:sameAs
•  owl:equivalentClass (C≡D)
•  owl:equivalentProperty (R≡S)

Equivalence and identity
relations

<owl:Thing rdf:about=“#MorningStar”>
 <owl:sameAs rdf:resource=“#EveningStar”/>
</owl:Thing>

•  owl:differentFrom
•  Can be used to specify a limited unique name assumption

•  OWL (and DLs in general) make the Open World Assumption
•  Knowledge of world is incomplete
•  If something cannot be proven true, then it isn’t assumed to be

false

Non-equivalence relations

<rdf:Description rdf:about=“#HarryCorbett”>
 <owl:differentFrom rdf:resource=“#HarryHCorbett”/>
</rdf:Description>

•  owl:AllDifferent and owl:distinctMembers
•  Used to specify a group of mutually distinct individuals

Non-equivalence relations

<owl:AllDifferent>
 <owl:distinctMembers rdf:parseType=“Collection”>
 <rdf:Description rdf:about=“#John”/>
 <rdf:Description rdf:about=“#Paul”/>
 <rdf:Description rdf:about=“#George”/>
 <rdf:Description rdf:about=“#Ringo”/>
 </owl:distinctMembers>
</owl:AllDifferent>

•  Necessary Conditions (⊑)
•  Primitive / partial classes
•  “If we know that something is a X,

then it must fulfill the conditions...”
•  Defined using rdfs:subClassOf

•  Necessary and Sufficient Conditions (≡)
•  Defined / complete classes
•  “If something fulfills the conditions...,

then it is an X."
•  Defined using owl:equivalentClass

Class Definitions

•  Defines a property as the inverse of another property
 (R ≡ S-)

Property types - Inverse

<owl:Property rdf:about=“#hasAuthor”>
 <owl:inverseOf rdf:resource=“#wrote”/>
</owl:Property>

•  Symmetric properties satisfy the axiom
 P(x,y) iff P(y,x)

Property types - Symmetric

<owl:SymmetricProperty rdf:about=“#hasSibling”/>

•  Transitive properties satisfy the axiom
 P(x,y) and P(y,z) implies P(x,z)

Property types – Transitive

<owl:TransitiveProperty rdf:about=“#hasAncestor”/>

•  Functional properties satisfy the axiom
 P(x,y) and P(x,z) implies y=z

(everyone has only one NI number)

Property types – Functional

<owl:FunctionalProperty rdf:about=“#hasNINumber”/>

•  Inverse functional properties satisfy the axiom
 P(y,x) and P(z,x) implies y=z

(people with the same NI number are the same person)

•  Cannot be used with owl:DatatypeProperty in OWL Lite/DL

Property types – Inverse
Functional

<owl:InverseFunctionalProperty rdf:about=“#hasNINumber”/>

•  owl:disjointWith
•  members of one class cannot also be members of some specified other

class

•  Cannot be used in OWL Lite

Disjoint classes

<owl:Class rdf:about=“#MaleHuman”>
 <rdfs:subClassOf rdf:resource=“#Human”/>
 <owl:disjointWith rdf:resource=“#FemaleHuman”/>
</owl:Class>

•  Defines a class as a direct enumeration of its members
•  owl:one of (C ≡ {a,b,c})

•  Cannot be extended (closed set)

•  Cannot be used in OWL Lite

Enumerated classes

Enumerated classes example

<owl:Class rdf:about=“#Continents”>
 <owl:oneOf rdf:parseType=“Collection”>
 <owl:Thing rdf:about=“#Africa”/>
 <owl:Thing rdf:about=“#Antarctica”/>
 <owl:Thing rdf:about=“#Oceania”/>
 <owl:Thing rdf:about=“#Europe”/>
 <owl:Thing rdf:about=“#North-America”/>
 <owl:Thing rdf:about=“#South-America”/>
 <owl:Thing rdf:about=“#Asia”/>
 </owl:oneOf>
</owl:Class>

•  owl:imports mechanism for including other ontologies
•  Also possible to use terms from other ontologies without

explicitly importing them
•  Importing requires certain entailments, whereas simple use

does not require (but also does not prevent) those
entailments

Ontology modularisation

•  Ontology 1 (ont1) contains:
BBB rdfs:subClassOf AAA

•  Ontology-2 (ont2) contains:
ont2 imports ont1
CCC rdfs:subClassOf BBB

•  Ontology-2 must entail
CCC rdfs:subClassOf AAA

Ontology modularisation
example

•  Ontology 1 (ont1) contains:
BBB rdfs:subClassOf AAA

•  Ontology-3 (ont3) contains:
CCC rdfs:subClassOf ont1:BBB

•  Ontology-3 does not necessarily entail
CCC rdfs:subClassOf ont1:AAA

Ontology modularisation
example

•  WebOnt working group formed Nov 2001
•  OWL Recommendations published in Feb 2004

OWL status

•  Web Ontology Working Group homepage
•  http://www.w3.org/2001/sw/WebOnt/

OWL references

OWL 2

•  OWL 1 design based on contemporary understanding of
techniques for decidable, sound and complete reasoning in
description logics

•  Our understanding has improved since 2004
•  Some things that looked intractable have been shown to be possible

•  Changes between 1 and 2 fall into the following categories:
•  Syntactic sugar (making it easier to say things we could already say)
•  Constructs for increased expressivity
•  Datatype support
•  Metamodelling
•  Annotation

From OWL 1 to OWL 2

•  Allows us to define a class as the union of a number of
other classes, all of which are pairwise disjoint

•  We’ll look at this modelling pattern more in later lectures

Syntactic Sugar: Disjoint Union

•  OWL 1 lets us state that two classes are disjoint

•  OWL 2 lets us state that a set of classes are pairwise
disjoint

Syntactic Sugar: Disjoint Classes

•  OWL 1 lets us assert property values for an individual

•  OWL 2 lets us assert that an individual does not have a
particular property value

 <owl:NegativePropertyAssertion>
 <owl:sourceIndividual rdf:resource=“john”/>
 <owl:assertionProperty rdf:resource=“hasChild”/>
 <owl:targetIndividual rdf:resource=“susan”/>

</owl:NegativePropertyAssertion>

Syntactic Sugar:
 Negative Property Assertions

•  Define a class of individuals which are related to to
themselves by a given property

 <owl:Restriction>
 <owl:onProperty rdf:resource=“...”/>
 <owl:hasSelf rdf:datatype=“&xsd;boolean”>true</owl:hasSelf>

</owl:Restriction>

New Constructs: Self Restriction

•  OWL 1 lets us either specify the local range of a property, or
the number of values taken by the property

•  OWL 2 lets us specify both together:

 <owl:Restriction>
 <owl:onProperty rdf:resource=“hasPart”/>
 <owl:onClass rdf:resource=“Wheel”/>
 <owl:cardinality rdf:datatype=“&xsd;integer”>4</owl:cardinality>

</owl:Restriction>

•  Similar construct for datatype properties

New Constructs:
Qualified Cardinality Restrictions

•  Allows us to assert that a property is globally reflexive
(relates every object to itself)

 <owl:ReflexiveProperty rdf:about=“sameAgeAs”/>

New Constructs:
 Reflexive Properties

•  Allows us to assert that a property relates no object to itself

 <owl:IrreflexiveProperty rdf:about=“strictlyTallerThan”/>

New Constructs:
 Irreflexive Properties

•  Allows us to assert that a property is asymmetric:
•  If p(x,y), then not p(y,x)

 <owl:AsymmetricProperty rdf:about=“strictlyTallerThan”/>

New Constructs:
 Asymmetric Properties

•  Allows us to state that two individuals cannot be related to
each other by two different properties that have been
declared disjoint

 <owl:ObjectProperty rdf:about=“connectedTo”>
 <owl:propertyDisjointWith rdf:resource=“contiguousWith”/>

</owl:ObjectProperty>

New Constructs:
 Disjoint Properties

•  OWL 1 does not let us define a property as a composition of
other properties
•  Example: hasUncle ≡ hasParent o hasBrother

•  OWL 2 lets us define such property compositions

 <owl:ObjectProperty rdf:about=“hasUncle”>
 <owl:propertyChainAxiom rdf:parseType=“Collection”>
 <owl:ObjectProperty rdf:about=“hasParent”/>
 <owl:ObjectProperty rdf:about=“hasBrother”/>
 </owl:propertyChainAxiom>

</owl:ObjectProperty>

New Constructs:
 Property Chain Inclusion

•  OWL 1 lets us define a property to be functional, so that
individuals can be uniquely identified by values of that
property

•  OWL 2 lets us define uniquely identifying keys that
comprise several properties

 <owl:Class rdf:about=“Person”>
 <owl:hasKey rdf:parseType=“Collection”>
 <owl:DatatypeProperty rdf:about=“hasSSN”/>
 <owl:DatatypeProperty rdf:about=“birthDate”/>
 </owl:hasKey>

</owl:Class>

New Constructs: Keys

•  Allows us to define subsets of datatypes that constrain the
range of values allowed by a datatype

•  For example, the datatype of integers greater than or equal
to 5:

 <owl:Datatype>
 <owl:onDatatype rdf:resource=“&xsd;integer”/>
 <owl:withRestrictions rdf:parseType=“Collection”>
 <xsd:minInclusive
 rdf:datatype=“&xsd;integer”>5</xsd:minInclusive>
 </owl:withRestrictions>

</owl:Datatype>

Datatype Restrictions

•  OWL 1 required the names used to identify classes,
properties, individuals and datatypes to be disjoint

•  OWL 2 relaxes this
•  The same name (URI) can be used for both a class and an individual

•  However:
•  A name cannot be used for both a class and a datatype
•  A name cannot be used for more than one type of property

(DataProperty vs ObjectProperty)

Metamodelling: Punning

•  OWL 1 has three dialects: OWL Lite, OWL DL and OWL
Full

•  OWL 2 introduces three profiles with useful computational
properties (reasoning, conjunctive queries):
•  OWL 2 EL (PTIME-complete, PSPACE-complete)
•  OWL 2 QL (NLOGSPACE-complete, NP-complete)
•  OWL 2 RL (PTIME-complete, NP-complete)

•  OWL 1 DL (NEXPTIME-complete, decidability open)

Language Profiles

Manchester DL Syntax

•  The DL syntax we’ve used so far is a ‘traditional’ syntax for
logical expressions

•  Not well understood by non-logicians

•  The Manchester DL syntax was introduced as a more user-
friendly syntax for use in tools
•  Used in Protégé 4 – the subject of our next lecture

A Plethora of Syntaxes

Traditional DL Syntax Manchester Syntax

C and D

C or D

not C

R some C

R only C

R min n

R max n

R exactly n

R value x

R min n C

Reflexive property R Self

Datatype restrictions int[>=2, <=15]

Manchester Syntax Summary

The Protégé Ontology Editor

•  Leading ontology editor
•  Early implementer of OWL (but was around before OWL)
•  Thriving user community
•  Annual user conference

•  Free and open source
•  http://protege.stanford.edu/
•  Many add-ons for visualisation, etc

Protégé

•  Protégé integrates reasoning into the ontology design
process
•  Checks your ontology for consistency, subsumption, etc
•  Uses DIG interface to communicate with the reasoner

•  Pellet
•  http://pellet.owldl.com/

•  FaCT++
•  http://owl.man.ac.uk/factplusplus/

Protégé and DL Reasoners

•  Horridge et al, A Practical Guide to Building OWL
Ontologies using the Protégé-OWL Plugin and CO-ODE
Tools, 2007

•  (available from COMP6028 website)

ESSENTIAL READING!

Example ontology: OWL Pizzas

•  Build an ontology for describing
pizzas and their ingredients
• Must be able to determine

whether pizzas are vegetarian,
spicy, etc

