
4th Annual

Making Use of What You’ve Got

• Contains one Intel Core 2 Duo
-  Two computing cores
- One source of parallelism for the operating system to support
- Better performance
-  core 1 @ 100% utilization ripping a DVD
-  core 2 running OS + Microsoft PowerPoint

• Also contains two NVIDIA 9400M Graphics Processors
- Each has 16 computing cores
- Untapped source of parallelism to support even better performance

• But how?
- GPUs are not standardised like INTEL architectures
- GPUs are optimised for very different copmputing tasks

OpenCL
Heterogeneous

Parallel Computing

Embedded 3D

Cross platform desktop 3D

3D Asset Interchange
Format

Enhanced Audio

Vector 2D

Surface and
synch abstraction

Streaming Media and
Image Processing

Mobile OS Abstraction

Integrated Mixed-media Stack

Desktop 3D
Ecosystem

Parallel computing and
visualization in scientific and

consumer applications

Umbrella specifications define
coherent acceleration stacks for
mobile application portability

Streamlined APIs for mobile and
embedded graphics, media and

compute acceleration

CPUs
Multiple cores driving

performance increases

GPUs
Increasingly general purpose

data-parallel computing
Improving numerical precision

Graphics APIs
and Shading
Languages

Multi-processor
programming –

e.g. OpenMP

Emerging
Intersection

OpenCL
Heterogenous

Computing

OpenCL – Open Computing Language
Open, royalty-free standard for portable, parallel programming of heterogeneous

parallel computing CPUs, GPUs, and other processors

•  One Host + one or more Compute Devices
-  Each Compute Device is composed of one or more Compute Units

-  Each Compute Unit is further divided into one or more Processing Elements

Compute Unit 1

Private
Memory

Private
Memory

Work Item 1 Work Item M

Compute Unit N

Private
Memory

Private
Memory

Work Item 1 Work Item M

Local Memory Local Memory

Global / Constant Memory Data Cache

Global Memory

•  Shared memory model
-  Relaxed consistency

•  Multiple distinct address spaces
-  Address spaces can be collapsed depending

on the device’s memory subsystem

•  Address spaces
-  Private - private to a work-item
-  Local - local to a work-group
-  Global - accessible by all work-items in all

work-groups
-  Constant - read only global space

•  Implementations map this hierarchy
-  To available physical memories

Compute Device Memory

Compute Device

PE PE PE PE

•  OpenCL Program:
-  Kernels

-  Basic unit of executable code — similar to C functions, CUDA kernels, etc.
-  Data-parallel or task-parallel

-  Host Program
-  Collection of compute kernels and internal functions
-  Analogous to a dynamic library

•  Kernel Execution
-  The host program invokes a kernel over an index space called an NDRange

-  NDRange, “N-Dimensional Range”, can be a 1D, 2D, or 3D space

-  A single kernel instance at a point in the index space is called a work-item
-  Work-items have unique global IDs from the index space

-  Work-items are further grouped into work-groups
-  Work-groups have a unique work-group ID
-  Work-items have a unique local ID within a work-group

•  Total number of work-items = Gx * Gy
•  Size of each work-group = Sx * Sy

•  Global ID can be computed from work-group ID and local ID

•  Host program
-  Query compute devices
-  Create contexts
-  Create memory objects associated to contexts
-  Compile and create kernel program objects
-  Issue commands to command-queue
-  Synchronization of commands
-  Clean up OpenCL resources

•  Kernels
-  C code with some restrictions and extensions

Platform Layer

Runtime

Language

•  Buffer objects
-  1D collection of objects (like C arrays)
-  Scalar types & Vector types, as well as user-defined Structures
-  Buffer objects accessed via pointers in the kernel

•  Image objects
-  2D or 3D texture, frame-buffer, or images
-  Must be addressed through built-in functions

•  Sampler objects
-  Describe how to sample an image in the kernel

-  Addressing modes
-  Filtering modes

• Simple element by element vector addition

For all i,

C(i) = A(i) + B(i)

• Outline
- Query compute devices
- Create Context and Queue
- Create memory objects associated to contexts
- Compile and create kernel program objects
-  Issue commands to command-queue
- Synchronization of commands
- Clean up OpenCL resources

// The JIT source code for the computation kernel
// ***
const char* cVectorAdd[] =
{
 "__kernel void VectorAdd(",
 " __global const float* a,",
 " __global const float* b,",
 " __global float* c)",
 "{",
 " int iGID = get_global_id(0);",
 " c[iGID] = a[iGID] + b[iGID];",
 "}"
};
const int SOURCE_NUM_LINES = sizeof(cVectorAdd) / sizeof(cVectorAdd[0]);

cl_context cxMainContext; // OpenCL context
cl_command_queue cqCommandQue; // OpenCL command que
cl_device_id* cdDevices; // OpenCL device list
cl_program cpProgram; // OpenCL program
cl_kernel ckKernel; // OpenCL kernel
cl_mem cmMemObjs[3]; // OpenCL memory buffer objects
cl_int ciErrNum = 0; // Error code var
size_t szGlobalWorkSize[1]; // Global # of work items
size_t szLocalWorkSize[1]; // # of Work Items in Work Group
size_t szParmDataBytes; // byte length of parameter storage
size_t szKernelLength; // byte Length of kernel code
int iTestN = 10000; // Length of demo test vectors

// create the OpenCL context on a GPU device
cxMainContext = clCreateContextFromType (0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context
clGetContextInfo (cxMainContext, CL_CONTEXT_DEVICES, 0, NULL, &szParmDataBytes);
cdDevices = (cl_device_id*)malloc(szParmDataBytes);
clGetContextInfo (cxMainContext, CL_CONTEXT_DEVICES, szParmDataBytes, cdDevices, NULL);

// create a command-queue
cqCommandQue = clCreateCommandQueue (cxMainContext, cdDevices[0], 0, NULL);

// allocate the first source buffer memory object… source data, so read only
cmMemObjs[0] = clCreateBuffer (cxMainContext,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(cl_float) * iTestN, srcA, NULL);

// allocate the second source buffer memory object … source data, so read only
cmMemObjs[1] = clCreateBuffer (cxMainContext,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(cl_float) * iTestN, srcB, NULL);

// allocate the destination buffer memory object … result data, so write only
cmMemObjs[2] = clCreateBuffer (cxMainContext, CL_MEM_WRITE_ONLY,
 sizeof(cl_float) * iTestN, NULL, NULL);

// create the program, in this case from OpenCL C source string array
cpProgram = clCreateProgramWithSource (cxMainContext, SOURCE_NUM_LINES,
 cVectorAdd, NULL, &ciErrNum);

// build the program
ciErrNum = clBuildProgram (cpProgram, 0, NULL, NULL, NULL, NULL);

// create the kernel
ckKernel = clCreateKernel (cpProgram, "VectorAdd", &ciErrNum);

// set the kernel Argument values
ciErrNum = clSetKernelArg (ckKernel, 0, sizeof(cl_mem), (void*)&cmMemObjs[0]);
ciErrNum |= clSetKernelArg (ckKernel, 1, sizeof(cl_mem), (void*)&cmMemObjs[1]);
ciErrNum |= clSetKernelArg (ckKernel, 2, sizeof(cl_mem), (void*)&cmMemObjs[2]);

// set work-item dimensions
szGlobalWorkSize[0] = iTestN;
szLocalWorkSize[0]= 1;

// execute kernel
ciErrNum = clEnqueueNDRangeKernel (cqCommandQue, ckKernel, 1, NULL,
 szGlobalWorkSize, szLocalWorkSize,
 0, NULL, NULL);

// read output
ciErrNum = clEnqueueReadBuffer(cqCommandQue, cmMemObjs[2], CL_TRUE,
 0, iTestN * sizeof(cl_float), dst, 0, NULL, NULL);

// release kernel, program, and memory objects
DeleteMemobjs (cmMemObjs, 3);
free (cdDevices);
clReleaseKernel (ckKernel);
clReleaseProgram (cpProgram);
clReleaseCommandQueue (cqCommandQue);
clReleaseContext (cxMainContext);

• Diverse industry participation
- Processor vendors, system OEMs, middleware vendors, application developers

• Many industry-leading experts involved in OpenCL’s design
- A healthy diversity of industry perspectives

• Apple initially proposed and is very active in the working group
- Serving as specification editor

• Here are some of the other companies in the OpenCL working group

• Apple “Snow Leopard” OS X.6
“Grand Central,” a new set of technologies built into
Snow Leopard, brings unrivaled support for multicore
systems to Mac OS X. More cores, not faster clock
speeds, drive performance increases in today’s
processors. Grand Central takes full advantage by
making all of Mac OS X multicore aware and
optimizing it for allocating tasks across multiple cores
and processors. Grand Central also makes it much
easier for developers to create programs that squeeze
every last drop of power from multicore systems.

