QUESTION

(a) Show that $\mathcal{H}_{0}\left(\frac{1}{r}\right)=\frac{1}{a}$ by using the fact that the Hankel transform is its own inverse.
(b) Solve the cylindrical wave equation

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}
$$

with the boundary conditions

$$
\begin{gathered}
\phi(r, 0)=\frac{1}{r}, \phi_{t}(r, 0)=0, \\
\phi \rightarrow 0 \text { as either } r \rightarrow \infty \text { or } t \rightarrow \infty, \phi_{r} \rightarrow 0 \text { as } r \rightarrow \infty .
\end{gathered}
$$

You can leave your final answer as an (inverse Hankel transform) integral.

ANSWER

(a)

$$
\mathcal{H}_{0}\left(\frac{1}{r}\right)=\int_{0}^{\infty} \frac{1}{r} \mathcal{J}_{0}(\alpha r) r d r=\int_{0}^{\infty} \mathcal{J}_{0}(\alpha r) d r=\frac{1}{\alpha} \int_{0}^{\infty} \mathcal{J}_{0}(x) d x=\frac{k}{\alpha}
$$

for some constant k. But as the Hankel transform is self inverse, $k=1$.
(b)

$$
\frac{1}{r}\left(r \phi_{r}\right)_{r}=\frac{1}{c^{2}} \phi_{t t}, \phi(r, 0)=\frac{1}{r}, \quad \phi_{t}(r, 0)=0
$$

$\phi \rightarrow 0$ as $r \rightarrow \infty$ or $t \rightarrow \infty, p h i_{r} \rightarrow 0$ as $r \rightarrow \infty$
Take a Hankel transform of order zero with respect to r

$$
\begin{gathered}
-\alpha^{2} \Phi(\alpha, t)=\frac{1}{c^{2}} \Phi_{t t}(\alpha, t) \\
\Phi(\alpha, t)=A(\alpha) \cos c \alpha t+B(\alpha) \sin c \alpha t \\
\phi_{t}(r, 0)=0 \forall r \Rightarrow \Phi_{t}(\alpha, 0)=0 \text { forall } \alpha \Rightarrow B(\alpha)=0 \\
\phi(r, 0)=\frac{1}{R} \Rightarrow \Phi(\alpha, 0)=\frac{1}{\alpha} \Rightarrow A(\alpha)=\frac{1}{\alpha}
\end{gathered}
$$

Inverse Hankel transform

$$
\phi(r, t)=\int_{0}^{\infty} \frac{1}{\alpha} \cos c \alpha t \mathcal{J}_{0}(\alpha r) \alpha d \alpha=\int_{0}^{\infty} \cos c \alpha t \mathcal{J}_{0}(\alpha r) d \alpha
$$

Could look this up as a cosine transform.

