Question

Let F be a closed set. Let A_0 be a set disjoint from F.

Let
$$A_n = \{x | x \in A_0, d(x, F) \ge \frac{1}{n}\}.$$

Show that $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_0^n$, and deduce the existence of $\lim_{n \to \infty} m^*(A_n)$ (it may be $+\infty$).

Prove that
$$A_0 = \bigcup_{i=0}^{\infty} (\dagger)$$

Write
$$D_n = A_{n+1} - A_n$$
. Show that, provided $m \ge n+2$,

$$d(D_m, D_n) \ge \frac{1}{m(n+1)} > 0.$$

Consider the sums $\sum_{k=1}^{\infty} m^*(D_{2k})$, $\sum_{k=0}^{\infty} m^*(D_{2k+1})$. If the first is infinite, prove

that $m^*(A_{2n}) \to \infty$, and if the second is infinite, prove that $m^*(A_{2n+1}) = +\infty$. Deduce that if either sum is infinite then $\lim_{n \to \infty} m^*(A_n) = +\infty \ge m^*(A_0)$. If both sums are finite, use (†) and

$$A_0 = A_{2n} \cup \bigcup_{k=n}^{\infty} D_{2k} \cup \bigcup_{k=n}^{\infty} D_{2k+1}$$
 to show that $m^*(A_0) \leq \lim m^*(A_{2n})$.
Deduce finally that $m^*(A_n) \to m^*(A_0)$ as $n \to \infty$. (None of the A's need be

measurable). Use this result to prove that a closed set S is measurable. (Hint: in the definition of measurability, let $E - S = A_0$).

Answer

$$A_n = \{x | x \in A_0, d(x, F) \ge \frac{1}{n}\} \subseteq A_0$$

If
$$x \in A_n$$
 then $x \in A_0$ and $d(x, F) \ge \frac{1}{n}$

$$\Rightarrow x \in A_0 \text{ and } d(x, F) \ge \frac{1}{n+1} \Rightarrow x \in A_{n+1}$$

Therefore
$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_0$$

Hence $m^*(A_n)$ is an increasing sequence. Thus $\lim m^*(A_n) \leq m^*(A_0)$ (may be $+\infty$)

Suppose
$$x \in D_m$$
, $y \in D_n$. Let $f \in F$

$$d(y,x) \ge d(y,f) - d(x,f)$$

$$\geq \frac{1}{n+1} - d(x,f)$$
 since $y \in D_n \subseteq A_{n+1}$

Now
$$x \in D_m$$
 so $x \in A_{m+1} - A_m$

Now
$$x \in D_m$$
 so $x \in A_{m+1} - A_m$
Hence $\frac{1}{m+1} \le d(x,f) < \frac{1}{m}$

Thus
$$d(y,x) \ge \frac{1}{n+1} - \frac{1}{m} = \frac{m-n-1}{m(n+1)} \ge \frac{1}{m(n+1)}$$
 provided $m \ge n+2$

Consider the sums $\sum_{k=1}^{\infty} m^*(D_{2k})$, and $\sum_{k=1}^{\infty} m^*(D_{2k+1})$

Suppose
$$\sum_{k=1}^{\infty} m^*(D_{2k}) = +\infty$$

Then
$$A_{2n} = A_1 \cup \bigcup_{k=1}^{n-1} D_{2k} \cup \bigcup_{k=0}^{n-1} D_{2k+1} \supseteq \bigcup_{k=1}^{n-1} D_{2k}$$

Thus
$$m^*(A_{2n}) \ge m^* \left(\bigcup_{k=1}^{n-1} D_{2k}\right) = \sum_{k=1}^{n-1} m^*(D_{2k})$$
 by (1) and

$$m^* \left(\bigcup_{i=1}^n S_i \right) = \sum_{i=1}^n m^*(S_i)$$

Therefore $m^*(A_{2n}) \to +\infty$ as $n \to \infty$

Similarly if the other sum is $+\infty$ then $m^*(A_{2k+1}) \to +\infty$.

Hence if either sum is $+\infty$, $m^*(A_n) \to +\infty$ as $n \to \infty$

and so $m^*(A_n) \to m^*(A_0) = +\infty$ as $n \to \infty$.

If both sums are convergent then $A_0 = A_{2n} \cup \bigcup_{k=n}^{\infty} D_{2k} \cup \bigcup_{k=n}^{\infty} D_{2k+1}$ and so

$$m^*(A_0) \le m^*(A_{2n}) + m^* \left(\bigcup_{k=n}^{\infty} D_{2k}\right) + m^* \left(\bigcup_{k=n}^{\infty} D_{2k+1}\right)$$

$$\le m^*(A_{2n}) + \left(\sum_{k=n}^{\infty} m^*(D_{2k})\right) + \sum_{k=n}^{\infty} m^*(D_{2k+1})$$

Since both sums converge, both sums from n to ∞ tend to zero as $n \to \infty$.

Hence $m^*(A_0) \leq \lim m^*(A_{2n}) = \lim m^*(A_n)$ by monotonicity.

Hence $m^*(A_0) = \lim m^*(A_n)$

Let F be a closed set. Let T be any set, let $A_0 = T - F$

Let
$$A_n = \{x | x \in A_0, d(x, F) \ge \frac{1}{n}\}$$

Then $d(A_n, T \cap F) > 0$ and so by theorem 2.8

$$m^*(T) = m^*((T \cap F) \cup (T - F))$$

> $m^*((T \cap F) \cup A_m)$

$$\geq m^*((T \cap F) \cup A_n) \qquad \text{(since } A_n \subseteq T - F)$$

= $m^*(T \cap F) + m^*(A_n) \qquad \text{for all } n.$

Therefore $m^*(T) \ge m^*(T \cap F) + \lim_{n \to \infty} m^*(A_n)$

$$= m^*(T \cap F) + m^*(T - F)$$

Hence the result.