Question

Let F be a closed set. Let A_{0} be a set disjoint from F.
Let $A_{n}=\left\{x \mid x \in A_{0}, d(x, F) \geq \frac{1}{n}\right\}$.
Show that $A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{0}$, and deduce the existence of $\lim _{n \rightarrow \infty} m^{*}\left(A_{n}\right)$ (it may be $+\infty$).
Prove that $A_{0}=\bigcup_{n=1}^{\infty}$
Write $D_{n}=A_{n+1}-A_{n}$. Show that, provided $m \geq n+2$,
$d\left(D_{m}, D_{n}\right) \geq \frac{1}{m(n+1)}>0$.
Consider the sums $\sum_{k=1}^{\infty} m^{*}\left(D_{2 k}\right), \sum_{k=0}^{\infty} m^{*}\left(D_{2 k+1}\right)$. If the first is infinite, prove that $m^{*}\left(A_{2 n}\right) \rightarrow \infty$, and if the second is infinite, prove that
$m^{*}\left(A_{2 n+1}\right)=+\infty$. Deduce that if either sum is infinite then $\lim m^{*}\left(A_{n}\right)=+\infty \geq m^{*}\left(A_{0}\right)$. If both sums are finite, use (\dagger) and $A_{0}=A_{2 n} \cup \bigcup_{k=n}^{\infty} D_{2 k} \cup \bigcup_{k=n}^{\infty} D_{2 k+1}$ to show that $m^{*}\left(A_{0}\right) \leq \lim m^{*}\left(A_{2 n}\right)$.
Deduce finally that $m^{*}\left(A_{n}\right) \rightarrow m^{*}\left(A_{0}\right)$ as $n \rightarrow \infty$. (None of the A 's need be measurable). Use this result to prove that a closed set S is measurable.
(Hint: in the definition of measurability, let $E-S=A_{0}$).
Answer
$A_{n}=\left\{x \mid x \in A_{0}, d(x, F) \geq \frac{1}{n}\right\} \subseteq A_{0}$
If $x \in A_{n}$ then $x \in A_{0}$ and $d(x, F) \geq \frac{1}{n}$
$\Rightarrow x \epsilon A_{0}$ and $d(x, F) \geq \frac{1}{n+1} \Rightarrow x \epsilon A_{n+1}$
Therefore $A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{0}$
Hence $m^{*}\left(A_{n}\right)$ is an increasing sequence. Thus $\lim m^{*}\left(A_{n}\right) \leq m^{*}\left(A_{0}\right)$ (may be $+\infty$)
Suppose $x \in D_{m}, y \epsilon D_{n}$. Let $f \epsilon F$
$d(y, x) \geq d(y, f)-d(x, f)$

$$
\geq \frac{1}{n+1}-d(x, f) \text { since } y \epsilon D_{n} \subseteq A_{n+1}
$$

Now $x \in D_{m}$ so $x \in A_{m+1}-A_{m}$
Hence $\frac{1}{m+1} \leq d(x, f)<\frac{1}{m}$

Thus $d(y, x) \geq \frac{1}{n+1}-\frac{1}{m}=\frac{m-n-1}{m(n+1)} \geq \frac{1}{m(n+1)}$
Consider the sums $\sum_{k=1}^{\infty} m^{*}\left(D_{2 k}\right)$, and $\sum_{k=1}^{\infty} m^{*}\left(D_{2 k+1}\right)$
Suppose $\sum_{k=1}^{\infty} m^{*}\left(D_{2 k}\right)=+\infty$
Then $A_{2 n}=A_{1} \cup \bigcup_{k=1}^{n-1} D_{2 k} \cup \bigcup_{k=0}^{n-1} D_{2 k+1} \supseteq \bigcup_{k=1}^{n-1} D_{2 k}$
Thus $m^{*}\left(A_{2 n}\right) \geq m^{*}\left(\bigcup_{k=1}^{n-1} D_{2 k}\right)=\sum_{k=1}^{n-1} m^{*}\left(D_{2 k}\right)$ by (1) and
$m^{*}\left(\bigcup_{i=1}^{n} S_{i}\right)=\sum_{i=1}^{n} m^{*}\left(S_{i}\right)$
Therefore $m^{*}\left(A_{2 n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$
Similarly if the other sum is $+\infty$ then $m^{*}\left(A_{2 k+1}\right) \rightarrow+\infty$.
Hence if either sum is $+\infty, m^{*}\left(A_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$ and so $m^{*}\left(A_{n}\right) \rightarrow m^{*}\left(A_{0}\right)=+\infty$ as $n \rightarrow \infty$.
If both sums are convergent then $A_{0}=A_{2 n} \cup \bigcup_{k=n}^{\infty} D_{2 k} \cup \bigcup_{k=n}^{\infty} D_{2 k+1}$ and so

$$
\begin{aligned}
m^{*}\left(A_{0}\right) & \leq m^{*}\left(A_{2 n}\right)+m^{*}\left(\bigcup_{k=n}^{\infty} D_{2 k}\right)+m^{*}\left(\bigcup_{k=n}^{\infty} D_{2 k+1}\right) \\
& \leq m^{*}\left(A_{2 n}\right)+\left(\sum_{k=n}^{\infty} m^{*}\left(D_{2 k}\right)\right)+\sum_{k=n}^{\infty} m^{*}\left(D_{2 k+1}\right)
\end{aligned}
$$

Since both sums converge, both sums from n to ∞ tend to zero as $n \rightarrow \infty$.
Hence $m^{*}\left(A_{0}\right) \leq \lim m^{*}\left(A_{2 n}\right)=\lim m^{*}\left(A_{n}\right)$ by monotonicity.
Hence $m^{*}\left(A_{0}\right)=\lim m^{*}\left(A_{n}\right)$
Let F be a closed set. Let T be any set, let $A_{0}=T-F$
Let $A_{n}=\left\{x \mid x \in A_{0}, d(x, F) \geq \frac{1}{n}\right\}$
Then $d\left(A_{n}, T \cap F\right)>0$ and so by theorem 2.8

$$
\begin{array}{rlrl}
m^{*}(T) & =m^{*}((T \cap F) \cup(T-F)) & & \\
& \geq m^{*}\left((T \cap F) \cup A_{n}\right) & & \text { (since } \left.A_{n} \subseteq T-F\right) \\
& =m^{*}(T \cap F)+m^{*}\left(A_{n}\right) & \text { for all } n .
\end{array}
$$

Therefore $m^{*}(T) \geq m^{*}(T \cap F)+\lim m^{*}\left(A_{n}\right)$

$$
=m^{*}(T \cap F)+m^{*}(T-F)
$$

Hence the result.

