
Question

Let F be a closed set. Let A0 be a set disjoint from F .

Let An = {x|xεA0, d(x, F ) ≥
1

n
}.

Show that A1 ⊆ A2 ⊆ · · · ⊆ A0, and deduce the existence of lim
n→∞

m∗(An) (it

may be +∞).

Prove that A0 =
∞
⋃

n=1

(†)

Write Dn = An+1 − An. Show that, provided m ≥ n+ 2,

d(Dm, Dn) ≥
1

m(n+ 1)
> 0.

Consider the sums
∞
∑

k=1

m∗(D2k),
∞
∑

k=0

m∗(D2k+1). If the first is infinite, prove

that m∗(A2n)→∞, and if the second is infinite, prove that
m∗(A2n+1) = +∞. Deduce that if either sum is infinite then
limm∗(An) = +∞ ≥ m∗(A0). If both sums are finite, use (†) and

A0 = A2n ∪
∞
⋃

k=n

D2k ∪
∞
⋃

k=n

D2k+1 to show that m∗(A0) ≤ limm∗(A2n).

Deduce finally that m∗(An)→ m∗(A0) as n→∞. (None of the A’s need be
measurable). Use this result to prove that a closed set S is measurable.
(Hint: in the definition of measurability, let E − S = A0).

Answer

An = {x|xεA0, d(x, F ) ≥
1

n
} ⊆ A0

If xεAn then xεA0 and d(x, F ) ≥
1

n

⇒ xεA0 and d(x, F ) ≥
1

n+ 1
⇒ xεAn+1

Therefore A1 ⊆ A2 ⊆ · · · ⊆ A0

Hence m∗(An) is an increasing sequence. Thus limm∗(An) ≤ m∗(A0) (may
be +∞)
Suppose xεDm, yεDn. Let fεF

d(y, x) ≥ d(y, f)− d(x, f)

≥
1

n+ 1
− d(x, f) since yεDn ⊆ An+1

Now xεDm so xεAm+1 − Am

Hence
1

m+ 1
≤ d(x, f) <

1

m

1



Thus d(y, x) ≥
1

n+ 1
−

1

m
=

m− n− 1

m(n+ 1)
≥

1

m(n+ 1)
(1)

provided m ≥ n+ 2

Consider the sums
∞
∑

k=1

m∗(D2k), and
∞
∑

k=1

m∗(D2k+1)

Suppose
∞
∑

k=1

m∗(D2k) = +∞

Then A2n = A1 ∪
n−1
⋃

k=1

D2k ∪
n−1
⋃

k=0

D2k+1 ⊇
n−1
⋃

k=1

D2k

Thus m∗(A2n) ≥ m∗

(

n−1
⋃

k=1

D2k

)

=
n−1
∑

k=1

m∗(D2k) by (1) and

m∗

(

n
⋃

i=1

Si

)

=
n
∑

i=1

m∗(Si)

Therefore m∗(A2n)→ +∞ as n→∞
Similarly if the other sum is +∞ then m∗(A2k+1)→ +∞.
Hence if either sum is +∞, m∗(An)→ +∞ as n→∞
and so m∗(An)→ m∗(A0) = +∞ as n→∞.

If both sums are convergent then A0 = A2n ∪
∞
⋃

k=n

D2k ∪
∞
⋃

k=n

D2k+1 and so

m∗(A0) ≤ m∗(A2n) +m∗

(

∞
⋃

k=n

D2k

)

+m∗

(

∞
⋃

k=n

D2k+1

)

≤ m∗(A2n) +

(

∞
∑

k=n

m∗(D2k)

)

+
∞
∑

k=n

m∗(D2k+1)

Since both sums converge, both sums from n to ∞ tend to zero as n→∞.
Hence m∗(A0) ≤ limm∗(A2n) = limm∗(An) by monotonicity.
Hence m∗(A0) = limm∗(An)

Let F be a closed set. Let T be any set, let A0 = T − F

Let An = {x|xεA0, d(x, F ) ≥
1

n
}

Then d(An, T ∩ F ) > 0 and so by theorem 2.8
m∗(T ) = m∗((T ∩ F ) ∪ (T − F ))

≥ m∗((T ∩ F ) ∪ An) (since An ⊆ T − F )
= m∗(T ∩ F ) +m∗(An) for all n.

Therefore m∗(T ) ≥ m∗(T ∩ F ) + limm∗(An)
= m∗(T ∩ F ) +m∗(T − F )

Hence the result.
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