
QUESTION
Find the most general solution of the Black-Scholes equation that has the
special form V (S, t) = A(t)B(S). (Hint: separate the variables).
ANSWER
V (S, t) = A(t)B(t)
Substituting this into Black-Scholes:
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Goal: seperate all the t dependence to one side and all the S dependence to
the other side.
To do this divide through by AB and rearrenge:

1

A

dA

dt
− r

︸ ︷︷ ︸

only t dependence (or const.)

= −
1

2

σ2S2

B

d2B

dS2
−
rS

B

dB

dS
︸ ︷︷ ︸

only S dependence

The only way this can happen is if LHS=RHS=const.
Let that constant be C.
Therefore

1

A

dA

dt
− r = C (1)

−
1

2

σ2S2

B

d2B

dS2
−
rS

B

dB

dS
= C (2)

Solve(1):
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⇒
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⇒ lnA = (r + c)t + const.

⇒ A = A(0)e(r+c)t
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Solve(2):
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Euler-equation: try solutions A = Sn with n to be found by substitution.
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Dividing by Sn
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Call these values n+, n−. Then the general solution is

B(S) = αrn
+

+ βrn
−

α, β const. Therefore the most general solution to Black-Scholes is

V = A(t)B(S) = A(0)e(r+c)t
[

αrn
+

+ βrn
−

]

= e(r+c)t
(

γrn
+

+ δrn
−

)

γ, δ = arbitrary constants to be determined by boundary data. (C is deter-
mined in the same way.)
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