
QUESTION

(a) Use a branch and bound algorithm to solve the following (zero-one)
knapsack problem. In your algorithm, always choose a node of the
search tree with the largest upper bound to be explored next.

Maximize z = 18x1 + 17x2 + 11x3 + 14x4 + 6x5 + 4x6 + 5x7

subject to 8x1 + 9x2 + 6x3 + 9x4 + 4x5 + 3x6 + 5x7 ≤ 20
xi = 0 or 1 for i = 1, . . . , 7.

Assume that the three following additional constraints are imposed:

x1 ≤ x3

x2 ≤ x4

x3 + x4 + x6 + x7 ≤ 1

By suitably adapting the algorithm, obtain an optimal solution to the
problem with these additional constraints.

(b) Explain why the knapsack problem is useful in delayed column gen-
eration. You may explain your answer by reference to the trim loss
problem: rolls of paper are cut into smaller rolls to satisfy customer
demand, and the objective is to minimize the wasted paper.

ANSWER

(a) Upper bounds found by an efficient algorithm which solves linear pro-
gramming relaxation.
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Node 1 UB = 18 + 17 + b 11

2
c = 40

LB = 35
Node 2 UB = 18 + 17 + b 14

3
c = 39

LB = 35
Node 3 UB = 18 + b 2

3
17c+ 11 = 40

LB = 29
Node 4 UB = 18 + b 2

3
14c+ 11 = 38

LB = 29
Node 5 UB = b5

7
18c+ 17 + 11 = 39

LB = 28
Node 6 UB = 17 + 11 + b 5

9
14c = 35

LB = 28
Node 7 infeasible
Node 8 UB = 18 + 17 + b 3

4
6c = 39

LB = 35
Node 9 UB = 18 + 17 + 4 = 39

LB = 32
Node 10 UB = 18 + 17 + 4 = 39

LB = 39
Node 11 UB = 18 + b 8

9
17c+ 6 = 39

LB = 24

Optimal solution at node 10,

x1 = x2 = x6 = 1 x3 = x4 = x5 = x7 = 0 z = 39

With the additional constraints, the upper bounds remain valid. How-
ever, it may be possible to fix variables at some nodes of tjhe tree,

At nodes 4 (and 3), x4 = 0, x2 = 0, x6 = 0, x7 = 0.

Thus UB = 18 + 11 + 6 = 35, LB = 35

At node 8, x1 = x2 = 0 UB = 6 + 4 + 5 = 15

At node 9, x1 = 0 UB = 17 + b1

2
6c+ 14 = 34

Optimal solution at node 4 x1 = x3 = x5 = 1 x2 = x4 = x6 = x7 =
0 z = 35

(b) In the trim loss problem, every column represents a cutting combina-
tion (where the rows are the number of cuts for the different possible
widths). Initially a small subset of columns is found and the linear
programming problem is solved. Let yi be the dual variable for row i.
If ni is the number of cuts for width i in a particular pattern and c is
the cost, then the reduced cost is
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c− n1y1 − n2y2 . . .

The most negative reduced cost is given for ni which minimize

c− n1y1 − n2y2 . . .

or equivalently maximize

z = n1y1 + n2y2 . . . (1)

There is a constraint on the number of widths that can be cut: if wi

is the width corresponding to row i and w is the width of the original
roll then

w1n1 + w2n2 + . . . ≤ w (2)

and

n1, n2 . . . are non-negative integers (3)

Clearly, (1), (2), (3) defines a knapsack problem. If z ≤ c, then there
are no negative reduced cost for unconsidered cutting combinations, so
the linear programming solution is optimal. Otherwise, the solution of
the knapsack problem generates a new cutting pattern that is added
as an extra column to the linear programming problem.
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