QUESTION

(a) Describe briefly some features of a computer implementation of the network simplex method that would improve the efficiency of a standard version of the algorithm.
(b) Show that the following linear programming problem can be formulated as a minimum cost network flow problem.

$$
\begin{array}{ll}
\text { Minimize } & z=8 x_{1}+7 x_{2}+2 x_{3}+6 x_{4}+2 x_{5}+6 x_{6} \\
& +5 x_{7}+8 x_{8}+7 x_{9}+9 x_{10}+8 x_{11} \\
\text { subject to } & x_{1}, \ldots, x_{11} \geq 0 \\
& x_{1}+x_{2}+x_{3}=20 \\
& x_{3}+x_{4}=16 \\
& x_{4}+x_{5}=25 \\
& x_{6}+x_{7}+x_{8}=10 \\
& x_{8}+x_{9}+x_{10}=30 \\
& x_{10}+x_{11}=32 \\
& x_{1}+x_{6} \leq 23
\end{array}
$$

Starting with a solution in which $x_{2}, x_{4}, x_{5}, x_{7}, x_{9}$ and x_{11} take positive values, and the last constraint is satisfied as a strict inequality, use the network simplex method to solve the problem.

ANSWER

(a) The main points are:

- compute dual variables by updating their values from the previous iteration, rather than performing a complete recalculation
- compute reduced costs for a subset of arcs, and if there are negative reduced costs, then choose the entering arc from this subset.
(b) The constraints can be written as

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =20 \\
-x_{3}-x_{4} & =-16 \\
x_{4}+x_{5} & =25 \\
x_{6}+x_{7}+x_{8} & =10 \\
-x_{8}-x_{9}+x_{10} & =-30 \\
x_{10}+x_{11} & =32 \\
-x_{1}-x_{6}-s & =-23 \\
-x_{2}-x_{5}-x_{7}+x_{9}-x_{11}+s & =-18
\end{aligned}
$$

where s is a slack variable, and the last redundant constraint is deduced from the others.

Non-basic	$y_{i}+c_{i j}-y_{j}$
$(1,7)$	1
$(3,2)$	9
$(4,5)$	-4
$(4,7)$	1
$(6,5)$	-6

Entering arc $(6,5)$

Leaving arc (8,5)

Non-basic $\left.\quad y_{i}+c_{i j}-y\right) j$

$(1,7)$	1
$(3,2)$	9
$(4,5)$	2
$(4,7)$	1
$(8,5)$	6

Thus we have an optimal solution.

$$
\begin{aligned}
& x_{3}=16 x_{2}=4 x_{5}=25 x_{11}=2 x_{10}=30 x_{7}=10 x_{1}=x_{4}=x_{6}=x_{8}= \\
& x_{9}=0 z=446
\end{aligned}
$$

