QUESTION

Solve the following linear programming problem.
Maximize $\quad z=18 x_{1}+3 x_{2}+x_{3}+16 x_{4}+3 x_{5}$
subject to $4 x_{1}+2 x_{2}-x_{3}+3 x_{4}+x_{5} \leq 24$

$$
8 x_{1}+x_{2}+x_{3}+4 x_{4}+4 x_{5} \leq 30
$$

$$
0 \leq x_{1} \leq 3
$$

$0 \leq x_{2} \leq 9$
$0 \leq x_{3} \leq 10$
$0 \leq x_{4} \leq 6$
$0 \leq x_{5} \leq 15$.
(i) For the first constraint, give the range of values for the right hand side within which the optimal basis remains unaltered. Also, perform this ranging analysis for the upper bound constraint $x_{4} \leq 6$.
(ii) If the last constraint is altered to become $-3 \leq x_{5} \leq 20$, find how your solution is affected.

ANSWER
Add slack variables $s_{1} \geq 0, s_{2} \geq 0$, and use the bounded variable simplex method.

Basic	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	s_{1}	s_{2}	
s_{1}	0	4	2	-1	3	1	1	0	24
s_{2}	0	8	1	1	4	4	0	1	30
	1	-18	-3	-16	-3	0	0	0	

Substitute $x_{1}^{\prime}=3-x_{1}$

Basic	z	x_{1}^{\prime}	x_{2}	x_{3}	x_{4}	x_{5}	s_{1}	s_{2}	
s_{1}	0	-4	2	-1	3	1	1	0	12
s_{1}	0	8	1	1	4	4	0	1	6
	1	18	-3	0	13	0	4	78	
Basic	z	x_{1}^{\prime}	x_{2}	x_{3}	x_{4}	x_{5}	s_{1}	s_{2}	
s_{1}	0	2	$\frac{5}{4}$	$-\frac{7}{4}$	0	-2	1	$-\frac{3}{4}$	$\frac{15}{2}$
x_{4}	0	-2	$\frac{1}{4}$	$\frac{1}{4}$	1	1	0	$\frac{1}{4}$	$\frac{3}{2}$
	1	-14	1	3	0	13	0	4	78

Substitute $x_{4}^{\prime}=6-x_{4}$

Basic	z	x_{1}^{\prime}	x_{2}	x_{3}	x_{4}^{\prime}	x_{5}	s_{1}	s_{2}	
s_{1}	0	0	$\frac{3}{2}$	$-\frac{3}{2}$	-1	-1	1	$-\frac{1}{2}$	$9-6=3$
x_{1}^{\prime}	0	1	$-\frac{1}{8}$	$-\frac{1}{8}$	$\frac{1}{2}$	$-\frac{1}{2}$	0	$-\frac{1}{8}$	$-\frac{3}{4}+3=\frac{9}{4}$
	1	0	$-\frac{3}{4}$	$\frac{5}{4}$	7	6	0	$\frac{9}{4}$	$\frac{135}{2}+42=\frac{219}{2}$

$$
\begin{array}{c|cccccccc|c}
\text { Basic } & z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & s_{1} & s_{2} & \\
x_{2} & 0 & 0 & 1 & -1 & -\frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} & 2 & \\
x_{1}^{\prime} & 0 & 1 & 0 & -\frac{1}{4} & \frac{5}{12} & -\frac{7}{12} & \frac{1}{12} & -\frac{1}{6} & \frac{5}{2} \\
& 1 & 0 & 0 & \frac{1}{2} & \frac{13}{2} & \frac{11}{2} & \frac{1}{2} & 2 & 111
\end{array}
$$

The optimal solution is

$$
\begin{gathered}
x_{1}^{\prime}=\frac{5}{2}, x_{2}=2, x_{3}=0, x_{4}^{\prime}=0, x_{5}=0 \\
x_{1}=\frac{1}{2}, x_{2}=2, x_{3}=0, x_{4}=6, x_{5}=0, z=111
\end{gathered}
$$

(i) If the first RHS becomes $24+\delta$, the RJHS columns in the final tableau becomes

$$
\begin{aligned}
2 & +\frac{2}{3} \delta \\
\frac{5}{2} & +\frac{1}{12} \delta \\
11 & +\frac{1}{2} \delta
\end{aligned}
$$

For non-negativity $\delta \geq-3, \delta \geq-30$
For

$$
\begin{aligned}
& x_{1}^{\prime} \leq 3: \frac{5}{2}+\frac{1}{12} \delta \leq 3 \delta \leq 6 \\
& x_{2} \leq 9: 2+\frac{2}{3} \delta \leq 9 \delta \leq \frac{21}{2}
\end{aligned}
$$

The required range is $-3 \leq \delta \leq 6$
If the current x_{4}^{\prime} column is changed from $6-x_{4}$ to $6+\delta-x_{4}$, the RHS's become

$$
\begin{aligned}
2 & -\frac{2}{3} \delta \\
\frac{5}{2} & +\frac{5}{12} \delta \\
11 & +\frac{13}{2} \delta
\end{aligned}
$$

For non-negativity $\delta \leq 3, \delta \geq-6$

For

$$
\begin{aligned}
& x_{1}^{\prime} \leq 3 \frac{5}{2}+\frac{5}{12} \delta \leq 3 \delta \leq \frac{6}{5} \\
& x_{2} \leq 92-\frac{2}{3} \delta \leq 9 \delta \geq-\frac{21}{2}
\end{aligned}
$$

The required range is $-6 \leq \delta \leq \frac{6}{5}$
(ii) Change the variable: $\bar{x}_{5}=x_{5}+3$, so that $0 \leq \bar{x}_{5} \leq 23$. The tableau is

which becomes

Thus z increases by $\frac{33}{2}$, and the values of x_{1} and x_{2} become $x_{1}=$ $\frac{9}{4}, x_{2}=0$.

