Question

A plane passes through the points A, B and C given by the vectors $\overrightarrow{O A}=$ $(1,0,-1), \overrightarrow{O B}=(1,2,3)$ and $\overrightarrow{O C}=(0,1,2)$.
(a) Write down the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$;
(b) Obtain a vector \mathbf{n} perpendicular to the plane P ;
(c) By writing the equation of the plane in the form $\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right) \cdot \mathbf{n}=0$, show that the equation of the plane is $2 x-4 y+2 z=0$. Verify that the points A, B and C all satisfy this equation

Answer

(a) $\overrightarrow{A B}=(0,2,4)=\mathbf{m} \overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=(0,1,2)-(1,0,-1)=(-1,1,3)=$ 1
(b) The plane P passes through A, B and C. Hence the vector \mathbf{n} is perpendicular to all vectors in the plane. Hence in particular \mathbf{n} is perpendicular to $\overrightarrow{A B}$ and $\overrightarrow{A C}$ (or \mathbf{l} and \mathbf{m}). Thus $\mathbf{n}=\mathbf{l} \times \mathbf{m}$ is perpendicular to \mathbf{l} and \mathbf{m}.

(c) Then the equation of the plane is $\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right) \cdot \mathbf{n}=0$ with $\mathbf{r}_{\mathbf{0}}$ any point in the plane.
Then

$$
\text { or } \begin{aligned}
{[\mathbf{r}-(1,0,-1)] \cdot[-2,4,-2] } & =0 \\
{[(x, y, z)-(1,0,-1)] \cdot[-2,4,-2] } & =0 \\
\Rightarrow-2 x+4 y+2 z+2-2 & =0 \\
\Rightarrow 2 x-4 y+2 z & =0
\end{aligned}
$$

Check that this is right by putting the A, B, C into the equation.

$(1,0,-1)$	$2(1)+2(-2)=0$
$(1,2,3)$	$2(1)-4(2)+2(3)=2-8+6=0$
$(0,1,2)$	$-4(1)+2(2)=0$

Hence the plane does indeed pass through all the points.

