QUESTION

Say, giving your reasons, whether the set G forms a group under the given operation in each of the following cases:
(i) G is the set of subsets of a set X, with the operation of union of sets.
(ii) G is the set of subsets of a set X, with the operation of intersection of sets.
(iii) G is the set of subsets of a set X, with the operation of symmetric difference, i.e., $A \triangle B=A \cup B-A \cap B$. (You nay assume that this operation is associative.)
(iv) $G=\mathbf{R}$ with the operation $x * y=\min (x, y)$.
(v) $G=\mathbf{R}$ with the operation of subtraction.
(vi) The set of functions from a set X to \mathbf{R} with the operation $(f+g)$ defined by $(f+g)(x)=f(x)+g(x)$ for all $x \in X$.
(vii) The set of odd numbers under addition.

ANSWER
(i)

$$
\begin{aligned}
\left(X^{\prime} \cup Y\right) \cup Z & =X \cup(Y \cup Z) \\
X^{\prime} \cup \emptyset & =\emptyset \cup X^{\prime}=X^{\prime} \\
X^{\prime} \cup Y=\emptyset & \rightarrow\left\{x \mid x \in X^{\prime} \text { or } x \in Y\right\}=\emptyset \\
& \rightarrow X=Y=\emptyset
\end{aligned}
$$

so unless $X^{\prime}=\emptyset, G$ is not a group.
(ii)

$$
\begin{aligned}
\left(X^{\prime} \cap Y\right) \cap Z & =\left\{x \in X^{\prime} \cap Y \mid x \in Z\right\} \\
& =\left\{x \mid x \in X^{\prime}, x \in Y \text { and } x \in Z\right\} \\
& =\left\{x \in X^{\prime} \cap(Y \cap Z)\right\}
\end{aligned}
$$

$X^{\prime} \cap X=X^{\prime}$ so there is an identity but $X^{\prime} \cap Y=X=X^{\prime}=Y=X$ so there are no inverses so G is not a group.
(iii) Operation is associative.
$X^{\prime} \triangle Y=X^{\prime} \Leftrightarrow X^{\prime} \cup Y \backslash X^{\prime} \cap Y=X \Leftrightarrow\left\{y \in Y \backslash X^{\prime}\right\}=\left\{y \in X^{\prime} \cap Y\right\}$ so Y must be a subset of X^{\prime}. Hence identity $=\emptyset$.
$X \triangle X=\emptyset$ so X^{\prime} has an inverse so G is a group.
(iv) $\min (x, y)=x \Rightarrow y \geq x$ since \mathbf{R} has no maximal element there is no identity. So G is not a group.
(v) $(x-y)=x \Rightarrow y=0$ and 0 is the identity.
$(x-y)-z \neq(x-(y-z))$ unless $z=0$ so not associative \Rightarrow not a group.
(vi)

$$
\begin{aligned}
((f+g)+k)(x) & =(f+g)(x)+k(x) \\
& =f(x)+g(x)+k(x) \\
& =(f+(g+k))(x)
\end{aligned}
$$

so the operation is associative
$(f+0)(x)=f(x)$ if $0(x)=0 \forall x$ so + has an identity.
Define $(-f)(x)=-f(x) \forall x$ so $f(x)+(-f)(x)=0 \forall x$ so inverses exist $\forall f$ so G is a group.
(vii) $3+5=8 \notin\{$ odd numbers $\}$ so this is therefore not a group.

