QUESTION

Define the following terms:
(i) homomorphism
(ii) isomorphism

Let G be a group. Show that the function $f: G \Rightarrow G$ given by $f(g)=g^{2}$ is a homomorphism if and only if G is abelian. Show that if G is finite, abelian and has no elements of order 2 then f is an isomorphism.
Define Euler's ϕ-function, state Euler's ϕ formula and use it to find the number of elements $m \in \mathbf{Z}_{8}$ such that $\langle m\rangle=\mathbf{Z}_{8}$.
ANSWER
(i) A homomorphism is a function $f: G \rightarrow H$ between two groups $\left(G, e_{G}, *\right)$ and $\left(H, e_{H},.\right)$ such that for any elements $g_{1}, g_{2} \in G, f\left(g_{1} * g_{2}\right)=$ $f\left(g_{1}\right) \cdot f\left(g_{2}\right)$.
(ii) An isomorphism is a bijective homomorphism.

Suppose first that G is abelian, so for any $g_{1}, g_{2} \in G, g_{1} * g_{2}=g_{2} * g_{1}$. Then $f\left(g_{1} * g_{2}\right)=\left(g_{1} * g_{2}\right)^{2}=g_{1} * g_{2} * g_{1} * g_{2}=g_{1} *\left(g_{1} * g_{2}\right) * g_{2}=g_{1}^{2} * g_{2}^{2}=g\left(g_{1}\right) * f\left(g_{2}\right)$ so f is a homomorphism.
Now suppose h is a homomorphism so for any $g_{1}, g_{2} \in G f\left(g_{1} * g_{2}\right)=f\left(g_{1}\right) *$ $f\left(g_{2}\right)$.
Then $\left(g_{1} * g_{2}\right)^{2}=g_{1}^{2} g_{2}^{2} \forall g_{1}, g_{2} \in G$ so

$$
\begin{aligned}
& g_{1} * g_{2} * g_{1} * g_{2}=g_{1} * g_{1} * g_{2} * g_{2} \\
\Rightarrow & g_{1}^{-1} * g_{1} * g_{2} * g_{1} * g_{2} * g_{2}^{-1}=g_{1}^{-1} * g_{1} * g_{1} * g_{2} * g_{2} * g_{2}^{-1} \\
\Rightarrow & g_{2} * g_{1}=g_{1} * g_{2} \forall g_{1}, g_{2} \in G
\end{aligned}
$$

If G is abelian then f is a homomorphism. If G has no elements of order 2 then $f(g)=e \Leftrightarrow g^{2}=e \Leftrightarrow g=e$ so $\operatorname{ker} f=\{e\}$. Hence f is injective. Since G is finite any injective function $f: G \rightarrow G$ is also surjective so f is an isomorphism.
$\phi(n)=$ number of integers less than n and coprime to it.
Euler's formula $\phi(n)=\sum_{d \mid n} \phi(d)$
$\phi(8)=$ number of generators of $Z_{8}=$ number of integers coprime to 8 and less than $8=$ number of odd integers less then $8=4$ so there are 4 generators.

