QUESTION

Define the following terms:

- (i) homomorphism
- (ii) isomorphism

Let G be a group. Show that the function $f: G \Rightarrow G$ given by $f(g) = g^2$ is a homomorphism if and only if G is abelian. Show that if G is finite, abelian and has no elements of order 2 then f is an isomorphism.

Define Euler's ϕ -function, state Euler's ϕ formula and use it to find the number of elements $m \in \mathbf{Z}_8$ such that $\langle m \rangle = \mathbf{Z}_8$.

ANSWER

- (i) A homomorphism is a function $f: G \to H$ between two groups $(G, e_G, *)$ and $(H, e_H, .)$ such that for any elements $g_1, g_2 \in G$, $f(g_1 * g_2) = f(g_1).f(g_2)$.
- (ii) An isomorphism is a bijective homomorphism.

Suppose first that G is abelian, so for any $g_1, g_2 \in G$, $g_1 * g_2 = g_2 * g_1$. Then $f(g_1 * g_2) = (g_1 * g_2)^2 = g_1 * g_2 * g_1 * g_2 = g_1 * (g_1 * g_2) * g_2 = g_1^2 * g_2^2 = g(g_1) * f(g_2)$ so f is a homomorphism.

Now suppose h is a homomorphism so for any $g_1, g_2 \in G$ $f(g_1 * g_2) = f(g_1) * f(g_2)$.

Then $(g_1 * g_2)^2 = g_1^2 g_2^2 \forall g_1, g_2 \in G$ so

$$g_1 * g_2 * g_1 * g_2 = g_1 * g_1 * g_2 * g_2$$

$$\Rightarrow g_1^{-1} * g_1 * g_2 * g_1 * g_2 * g_2^{-1} = g_1^{-1} * g_1 * g_1 * g_2 * g_2^{-1}$$

$$\Rightarrow g_2 * g_1 = g_1 * g_2 \forall g_1, g_2 \in G$$

If G is abelian then f is a homomorphism. If G has no elements of order 2 then $f(g) = e \Leftrightarrow g^2 = e \Leftrightarrow g = e$ so $\ker f = \{e\}$. Hence f is injective. Since G is finite any injective function $f: G \to G$ is also surjective so f is an isomorphism.

 $\phi(n)$ =number of integers less than n and coprime to it.

Euler's formula $\phi(n) = \sum_{d|n} \phi(d)$

 $\phi(8)$ =number of generators of Z_8 = number of integers coprime to 8 and less than 8= number of odd integers less then 8= 4 so there are 4 generators.