Question

Let ℓ_1 be the hyperbolic line contained in the Euclidean line $\{z \in \mathbf{H} | \operatorname{Re}(z) = 2\}$, and let ℓ_2 be the hyperbolic line contained in the Euclidean circle with center -3 and radius 8. Determine all the elements of Möb(\mathbf{H}) taking ℓ_1 to ℓ_2 .

Answer

 ℓ_1 has endpoints at infinity $x_1=2, y_1=\infty$ ℓ_2 has endpoints at infinity $x_2=-11, y_2=5$

Consider
$$p(z) \in \text{M\"ob}^+(\mathbf{H})$$
. $p(z) = \frac{11(z-2)+5}{-(z-2)+1} = \frac{11z-17}{-z+3}$

Then, $p(2) = 5, p(\infty) = -11$, and det(p) = 16 > 0, and so $p(z) \in M\ddot{o}b^{+}(\mathbf{H})$ and $p(\ell_1) = \ell_2$.

If $m \in \text{M\"ob}(\mathbf{H})$, $m(\ell_1) = \ell_2$, then $p^{-1} \circ m(\ell_1) = \ell_1$, and so $m = p \circ n$, $n(\ell_1) = \ell_1$.

 $\operatorname{stab}_{\text{M\"ob}(\mathbf{H})}(\ell_1)$ is generated by:

$$\mu(z) = -\bar{z} + 4$$

$$\nu(z) = 2 + \frac{1}{(z-2)}$$

$$\lambda(z) = az + 2(1-a) \quad (a > 0)$$

(<u>no</u> parabolics)

(conjugate the generators of $\operatorname{stab}_{\text{M\"ob}(\mathbf{H})}(I)$ by $z\mapsto z+2$, where I is the positive imaginary axis).

So, the set of all $M\ddot{o}b(\mathbf{H})$ taking ℓ_1 to ℓ_2 is generated by

$$p \circ \mu(z) = \frac{11(-\bar{z}+4)-17}{\bar{z}-4+3} = \frac{-11\bar{z}+27}{\bar{z}-1}$$

$$p \circ \nu(z) = \frac{11\nu(z) - 17}{-\nu(z) + 3} = \frac{-6z + 23}{2z - 5}$$

$$p \circ \lambda(z) = \frac{11az + 22(1-a) - 17}{-az - 2(1-a) + 3} \quad (a > 0)$$