Question

Let ℓ_{1} be the hyperbolic line contained in the Euclidean line $\{z \in \mathbf{H} \mid \operatorname{Re}(z)=$ $2\}$, and let ℓ_{2} be the hyperbolic line contained in the Euclidean circle with center -3 and radius 8 . Determine all the elements of Möb($\mathbf{H})$ taking ℓ_{1} to ℓ_{2}.

Answer

ℓ_{1} has endpoints at infinity $x_{1}=2, y_{1}=\infty$
ℓ_{2} has endpoints at infinity $x_{2}=-11, y_{2}=5$
Consider $p(z) \in \operatorname{Möb}^{+}(\mathbf{H}) . p(z)=\frac{11(z-2)+5}{-(z-2)+1}=\frac{11 z-17}{-z+3}$
Then, $p(2)=5, p(\infty)=-11$, and $\operatorname{det}(p)=16>0$, and so $p(z) \in \mathrm{Möb}^{+}(\mathbf{H})$ and $p\left(\ell_{1}\right)=\ell_{2}$.

If $m \in \operatorname{Möb}(\mathbf{H}), m\left(\ell_{1}\right)=\ell_{2}$, then $p^{-1} \circ m\left(\ell_{1}\right)=\ell_{1}$, and so $m=p \circ n, n\left(\ell_{1}\right)=$ ℓ.
$\operatorname{stab}_{\mathrm{Möb}(\mathbf{H})}\left(\ell_{1}\right)$ is generated by:

$$
\begin{aligned}
& \mu(z)=-\bar{z}+4 \\
& \nu(z)=2+\frac{1}{(z-2)} \\
& \lambda(z)=a z+2(1-a) \quad(a>0)
\end{aligned}
$$

(no parabolics)
(conjugate the generators of $\operatorname{stab}_{\operatorname{Möb}(\mathbf{H})}(I)$ by $z \mapsto z+2$, where I is the positive imaginary axis).

So, the set of all $\operatorname{Möb}(\mathbf{H})$ taking ℓ_{1} to ℓ_{2} is generated by

$$
\begin{gathered}
p \circ \mu(z)=\frac{11(-\bar{z}+4)-17}{\bar{z}-4+3}=\frac{-11 \bar{z}+27}{\bar{z}-1} \\
p \circ \nu(z)=\frac{11 \nu(z)-17}{-\nu(z)+3}=\frac{-6 z+23}{2 z-5} \\
p \circ \lambda(z)=\frac{11 a z+22(1-a)-17}{-a z-2(1-a)+3} \quad(a>0)
\end{gathered}
$$

