Question

A particle moves under the influence of the force $F=-k x+\frac{k x^{3}}{\alpha^{2}}$, where k and α are constants and $k>0$.
(a) Determine the potential $U(x)$ and discuss the motion.
(b) What happens if the total energy $E=\frac{k \alpha^{2}}{4}$?

Answer
(a) $U=-\int F d x=-\int\left(-k x+\frac{k x^{3}}{\alpha^{2}}\right) d x$
$U(x)=\frac{1}{2} k x^{2}-\frac{k x^{4}}{4 \alpha^{2}}$

If the particle has total energy less than $U_{\max }$ it will either oscillate about the origin or go off to $x= \pm \infty$ depending on the initial position. Otherwise, if $U>U_{\max }$, it will move off to $\pm \infty$.
If $U=U_{\text {max }}$ see (b) below.
(b) If $U=U_{\max }$. Either the motion is in $-\alpha<x<\alpha$, in which case after infinite time the particle reaches $x=\alpha$ or $x=-\alpha$; or if $|x|>\alpha$ the particle moves off to $x=+\infty$ or $-\infty$ with increasing speed.

