Question

A particle of mass m hangs vertically on the end of a spring of stiffness k and natural length l. The particle is displaced vertically downwards a distance $\frac{l}{2}$ and released from rest.

- (a) What is the maximum height achieved by the particle in the subsequence motion?
- (b) Show that the particle oscillates up and down with a frequency $\sqrt{\frac{k}{m}}$.

Answer

Using Newton's 2nd law:

$$m\ddot{x} = mg - k(x - l)$$

$$\ddot{x} = g + \frac{kl}{m} - kmx \quad (*)$$
 Energy: K.E. + P.E. = constant
$$\frac{1}{2}m\dot{x}^2 + \frac{1}{2}k(x - l)^2 = 0 + \frac{1}{2}k\left(\frac{3}{2}l - l\right)$$

Since initially $\dot{x} = 0$ and $x = \frac{3}{2}l$

(a) At the maximum height v = 0.

Therefore
$$\frac{1}{2}k(x-l)^2 = \frac{1}{2}k\left(\frac{l}{2}\right)^2 \Rightarrow x = \frac{l}{2}$$

(b) Solving (*) gives:
$$x=l+\frac{mg}{k}+A\cos\left(\sqrt{\frac{k}{m}}t+B\right)$$
, where A and B are constants and the frequency is $\sqrt{\frac{k}{m}}$