Question

A particle of mass m hangs vertically on the end of a spring of stiffness k and natural length l. The particle is displaced vertically downwards a distance $\frac{l}{2}$ and released from rest.
(a) What is the maximum height achieved by the particle in the subsequence motion?
(b) Show that the particle oscillates up and down with a frequency $\sqrt{\frac{k}{m}}$.

Answer

Using Newton's 2nd law:

$$
\begin{align*}
m \ddot{x} & =m g-k(x-l) \\
\ddot{x} & =g+\frac{k l}{m}-k m x \tag{*}
\end{align*}
$$

Energy: K.E. + P.E. $=$ constant

$$
\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k(x-l)^{2}=0+\frac{1}{2} k\left(\frac{3}{2} l-l\right)
$$

Since initially $\dot{x}=0$ and $x=\frac{3}{2} l$
(a) At the maximum height $v=0$.

$$
\text { Therefore } \frac{1}{2} k(x-l)^{2}=\frac{1}{2} k\left(\frac{l}{2}\right)^{2} \Rightarrow x=\frac{l}{2}
$$

(b) Solving $\left(^{*}\right)$ gives: $x=l+\frac{m g}{k}+A \cos \left(\sqrt{\frac{k}{m}} t+B\right)$, where A and B are constants and the frequency is $\sqrt{\frac{k}{m}}$

