Question

A particle of mass m moves in a straight line form a fixed particle of mass M under their influence of their mutual gravitational attraction. Show that the potential of the gravitational force is $-\frac{G m m}{r}$, where R is the distance between two masses. A rocket departs from the earth in a straight line. Shortly after lift-off when the engines have stopped firing the rocket has speed u.
(a) Show that in order that the rocket can escape the earth's gravitational field $u>u_{E}$, where u_{E} is the so called escape velocity for a particle. (treat the gravitational field of the earth as that of a particle with the mass of the earth and write down conservation of energy for the rocket.)
(b) Calculate u_{E} given that $G=6.6726 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$, the mass of the earth is $5.976 \times 10^{24} \mathrm{~kg}$ and the radius of the earth is $6.38 \times 10^{6} \mathrm{~m}$.

Answer

Gravitational Force $\mathbf{F}=-\frac{G M m}{r^{2}} \mathbf{i}$
Potential $=-\int F d r=-\frac{G M m}{r}$
(a) Conservation of energy: Kinetic Energy + Potential Energy $=$ Constant

Therefore $\frac{1}{2} m u^{2}-\frac{G M m}{r}=$ constant
Initially $u=v$, and $r=R$ (the radius of the earth)
Therefore $\frac{1}{2} m v^{2}-\frac{G M m}{r}=\frac{1}{2} m v^{2}-\frac{G M m}{R}$
(b) For a rocket to escape the Earth's gravitational field requires $v \geq 0$ as $r \rightarrow \infty$, hence

$$
\frac{1}{2} m^{2} \geq \frac{G M m}{R} \Rightarrow v \geq \sqrt{\frac{2 G M}{R}}
$$

Using the Earth's data gives an escape velocity of $11.2 \mathrm{kms}^{-1}$

