Question

An extremely well constructed rocket has mass ratio (initial to final mass) of 10. A new fuel is developed that has an exhaust velocity of $4500 \mathrm{~ms}^{-1}$. The fuel burns at a constant rate for 300s. Calculate the maximum velocity of this single stage rocket assuming constant acceleration due to gravity. If the escape velocity of a particle from the earth is $11.2 \mathrm{kms}^{-1}$, can this rocket reach the moon?

Answer

PICTURE
By Newton's 2nd law:

$$
\begin{aligned}
-m(t) g & =\text { rate of change of momentum } \\
& =m(t) \frac{d v}{d t}+u \frac{d m}{d t} \\
\frac{d v}{d t} & =-g-\frac{u}{m} \frac{d m}{d t} \\
\text { Integrating w.r.t. } t: \int d v & =\int-g d t-\int \frac{u}{m} d m \\
v & =-g t-u \ln |m|+c \\
& \text { using the fact that } t=0, v=0, m=m_{0} \\
\Rightarrow c & =u \ln \left|m_{0}\right| \\
\text { therefore } v(t) & =-g t+u \ln \left|m_{0}\right|-u \ln |m| \\
v(t) & =-g t+u \ln \frac{m_{0}}{m(t)}
\end{aligned}
$$

In this case $m(t)=m_{0}-\alpha t$
Where the burn rate $\alpha=\frac{0.9 m_{0}}{r}$, and where $r=300 \mathrm{~s}$
We must first check that it lifts off.
i.e. Thrust $=u \alpha=4.5 \times 10^{3} \times \frac{9.0 m_{0}}{300}=13.3 m_{0} \mathrm{~ms}^{-1} \geq m_{0} g$
(where $g=9.81 \mathrm{~ms}^{-2}$). Therefore the rocket does lift off.
Now $v(0)=0$. Are there any maxima of $v(t)$ on the range $0<t<r$?
$\frac{d v}{d t}=-g+\frac{\alpha n}{m(t)}=g\left[\frac{\alpha n}{m(t) g}-1\right]>0$
as $\alpha u>m_{0} g>m(t) g$ from the lift-off condition above.
Hence there are no internal maxima, so the maximum velocity is at $t=r$;
$v_{\text {max }}=-g 30+u \ln 10=7400 \mathrm{~ms}^{-1}$.
Thus the final velocity is less than escape velocity of $11.2 \mathrm{kms}^{-1}$ and so the rocket cannot reach the moon.

