Applications of Partial Differentiation Extremes

Question

(a)

$$
f(x, y)=\left(y-x^{2}\right)\left(y-3 x^{2}\right)
$$

Show that the origin is a critical point of f and that the restriction of f to every straight line through the origin has a local minimum value at the origin.
(i.e. show that $f(x, k x)$ has a local minimum value at $x=0 \forall k$, and that $f(0, y)$ has a local minimum value at $y=0$.)
(b) Is there a local minimum value of $f(x, y)$ at the origin?
(c) On the curve $y=2 x^{2}$, what happens to f ?

What does the second derivative test say about this situation?

Answer

(a)

$$
\begin{aligned}
f(x, y) & =\left(y-x^{2}\right)\left(y-3 x^{2}\right)=y^{2}-4 x^{2} y+3 x^{4} \\
f_{1}(x, y) & =-8 x y+12 x^{3}=4 x\left(3 x^{2}-2 y\right) \\
f_{2}(x, y) & =2 y-4 x^{2}
\end{aligned}
$$

Since $f_{1}(0,0)=f_{2}(0,0)=0$, therefore $(0,0)$ is a critical point of f.
(b) Let $g(x)=f(x, k x)=k^{2} x^{2}-4 k x^{3}+3 x^{4}$. Then

$$
\begin{aligned}
g^{\prime}(x) & =2 k^{2} x-12 k x^{2}+12 x^{3} \\
g^{\prime \prime}(x) & =2 k^{2}-24 k x+36 x^{2} .
\end{aligned}
$$

Since $g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=2 k^{2}>0$ for $k \neq 0, g$ has a local minimum value at $x=0$. Thus $f(x, k x)$ has a local minimum at $x=0$ if $k \neq 0$.
Since $f(x, 0)=3 x^{4}$ and $f(0, y)=y^{2}$ both have local minimum values at $(0,0), f$ has a local minimum at $(0,0)$ when restricted to any straight line through the origin.
(c)

However, on the curve $y=2 x^{2}$ we have

$$
f\left(x, 2 x^{2}\right)=x^{2}\left(-x^{2}\right)=-x^{4}
$$

which has a local maximum value at the origin. Therefore f does not have an (unrestricted) local minimum value at the origin.
Note that

$$
\begin{aligned}
A & =f_{11}(0,0)=\left.\left(-8 y+36 x^{2}\right)\right|_{(0,0)}=0 \\
B & =f_{12}(0,0)=-\left.8 x\right|_{(0,0)}-0
\end{aligned}
$$

Thus $A C=B^{2}$ and the second derivative test at the origin is indeterminate.

