Applications of Partial Differentiation Extremes

Question

Find the three positive numbers a, b and c given that the sum of these numbers is 30 and for which the expression $a b^{2} c^{3}$ is maximum.

Answer

It is given that

$$
\begin{gathered}
a>0, b>0, c>0 \\
\text { and } \quad a+b+c=30
\end{gathered}
$$

and we want to maximize the following:

$$
\begin{aligned}
P & =a b^{2} c^{3}=(30-b-c) b^{2} c^{3} \\
& =30 b^{2} c^{3}-b^{3} c^{3}-b^{2} c^{4}
\end{aligned}
$$

Since $P=0$ if $b=0$ or $c=0$ or $b+c=30$ (i.e. $a=30$), the maximum value of P will occur at a critical point (b, c) satisfying $b>0, c>0$ and $b+c<30$. For CP:

$$
\begin{aligned}
0=\frac{\partial P}{\partial b} & =60 b c^{3}-3 b^{2} c^{3}-2 b c^{4} \\
& =b c^{3}(60-3 b-2 c) \\
0=\frac{\partial P}{\partial c} & =90 b^{2} c^{2}-3 b^{3} c^{2}-4 b^{2} c^{3} \\
& =b^{2} c^{2}(90-3 b-4 c)
\end{aligned}
$$

Hence $9 b+6 c=180=6 b+8 c$, from which we obtain $3 b=2 c=30$.
The three numbers are $b=10, c=15$ and $a=30-10-15=5$.

