Applications of Partial Differentiation
 Extremes

Question

Find the the dimensions of an open top rectangular box. It is given that the box has volume V and the five faces give the box the least possible surface area.
Answer
Let the length, width and height of the box be x, y and z respectively. Then $V=x y z$. The total surface area of the bottom and sides is

$$
\begin{aligned}
S & =x y+2 x z+2 y z=x y+2(x+y) \frac{V}{x y} \\
& =x y+\frac{2 V}{x}+\frac{2 V}{y}
\end{aligned}
$$

where $x>0$ and $y>0$. Since $S \rightarrow \infty$ as $x \rightarrow 0+$ or $y \rightarrow 0+$ or $x^{2}+y^{2}$ to ∞, S must have a minimum value at a critical point in the first quadrant. For CP:

$$
\begin{aligned}
& 0=\frac{\partial S}{\partial x}=y-\frac{2 V}{x^{2}} \\
& 0=\frac{\partial S}{\partial y}=x-\frac{2 V}{y^{2}}
\end{aligned}
$$

Thus $x^{2} y=2 V=x y^{2}$, so that $x=y=(2 V)^{1 / 3}$ and $z=V /(2 V)^{2 / 3}=$ $2^{-2 / 3} V^{1 / 3}$.

