Applications of Partial Differentiation Extremes

Question

Find the minimum value of

$$
f(x, y)=x+8 y+\frac{1}{x y}
$$

in the first quadrant $(x>0, y>0)$.
How do you know that a minimum exists?

$$
\begin{array}{rlrl}
\text { Answer } & & \\
\qquad \begin{aligned}
f(x, y) & =x+8 y+\frac{1}{x y} & & x>0, y>0 \\
f_{1}(x, y) & =1-\frac{1}{x^{2} y}=0 & & x^{2} y=1 \\
f_{2}(x, y) & =8-\frac{1}{x y^{2}}=07 \Rightarrow 8 x y^{2}=1 & &
\end{aligned}
\end{array}
$$

The critical points must satisfy

$$
\frac{x}{y}=\frac{x^{2} y}{x y^{2}}=8
$$

that is $x=8 y$. Also, $x^{2} y=1$, so $64 y^{3}=1$.
Thus $y=1 / 4$ and $x=2$; the critical point is $\left(2, \frac{1}{4}\right)$.
Since $f(x, y) \rightarrow \infty$ if $x \rightarrow 0+, y \rightarrow 0+$, or $x^{2}+y^{2} \rightarrow \infty$, the critical point must give a minimum value for f.
The minimum value is $f\left(2, \frac{1}{4}\right)=2+2+2=6$.

