Applications of Partial Differentiation Extremes

Question

Find the minimum value of

$$f(x,y) = x + 8y + \frac{1}{xy}$$

in the first quadrant (x > 0, y > 0).

How do you know that a minimum exists?

Answer

$$f(x,y) = x + 8y + \frac{1}{xy} \qquad x > 0, \ y > 0$$

$$f_1(x,y) = 1 - \frac{1}{x^2y} = 0 \qquad \Rightarrow x^2y = 1$$

$$f_2(x,y) = 8 - \frac{1}{xy^2} = 07 \Rightarrow 8xy^2 = 1$$

The critical points must satisfy

$$\frac{x}{y} = \frac{x^2y}{xy^2} = 8$$

that is x = 8y. Also, $x^2y = 1$, so $64y^3 = 1$.

Thus y=1/4 and x=2; the critical point is $(2,\frac{1}{4})$. Since $f(x,y)\to\infty$ if $x\to 0+$, $y\to 0+$, or $x^2+y^2\to\infty$, the critical point must give a minimum value for f.

The minimum value is $f(2, \frac{1}{4}) = 2 + 2 + 2 = 6$.