Applications of Partial Differentiation Extremes

Question

Find the minimum and maximum values of

$$
f(x, y, z)=x y z e^{-x^{2}-y^{2}-z^{2}}
$$

How do you know that extreme values exist?
Answer

$$
\begin{aligned}
f(x, y, z) & =x y z e^{-x^{2}-y^{2}-z^{2}} \\
f_{1}(x, y, z) & =y z\left(1-2 x^{2}\right) e^{-x^{2}-y^{2}-z^{2}} \\
f_{2}(x, y, z) & =x z\left(1-2 y^{2}\right) e^{-x^{2}-y^{2}-z^{2}} \\
f_{3}(x, y, z) & =x y\left(1-2 z^{2}\right) e^{-x^{2}-y^{2}-z^{2}}
\end{aligned}
$$

Any critical point must satisfy

$$
\begin{aligned}
y z\left(1-2 x^{2}\right)= & 0 \\
& \text { i.e. } \mathrm{y}=0 \text { or } \mathrm{z}=0 \text { or } \mathrm{x}= \pm \frac{1}{\sqrt{2}} \\
x z\left(1-2 y^{2}\right)= & 0 \\
& \text { i.e. } \mathrm{x}=0 \text { or } \mathrm{z}=0 \text { or } \mathrm{y}= \pm \frac{1}{\sqrt{2}} \\
x y\left(1-2 z^{2}\right)= & 0 \\
& \text { i.e. } \mathrm{y}=0 \text { or } \mathrm{y}=0 \text { or } \mathrm{z}= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

Since $f(x, y, z)$ is positive at some points, negative at others, and approaches 0 as (x, y, z) recedes to infinity, f must have maximum and minimum values at critical points.
Since $f(x, y, z)=0$ if $x=0$ or $y=0$ or $z=0$, the max and min values must occur among the eight critical points where

$$
\begin{aligned}
x & = \pm 1 / \sqrt{2} \\
y & = \pm 1 / \sqrt{2} \\
z & = \pm 1 / \sqrt{2}
\end{aligned}
$$

At four of these points, f has the value $\frac{1}{2 \sqrt{2}} e^{-3 / 2}$, the maximum value.
At the other four f has the value $-\frac{1}{2 \sqrt{2}} e^{-3 / 2}$, the minimum value.

