Applications of Partial Differentiation
 Extremes

Question

Find the minimum and maximum values of

$$
f(x, y)=\frac{x}{\left(1+x^{2}+y^{2}\right.}
$$

Answer

$$
\begin{aligned}
f(x, y)= & \frac{x}{\left(1+x^{2}+y^{2}\right)} \\
f_{1}(x, y)= & \frac{1+y^{2}-x^{2}}{\left(1+x^{2}+y^{2}\right)^{2}} \\
f_{2}(x, y)= & \frac{-2 x y}{\left(1+x^{2}+y^{2}\right)^{2}} \\
& \quad \text { i.e. } \mathrm{y}=0 \text { or } \mathrm{z}=0 \text { or } \mathrm{x}= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

For critical points, $x^{2}-y^{2}=1$ and $x y=0$. The critical points are $(\pm 1,0)$. $f(\pm 1,0)= \pm \frac{1}{2}$.
Since $f(x, y) \rightarrow 0$ as $x^{2}+y^{2} \rightarrow \infty$, the maximum and minimum values of f are $1 / 2$ and $-1 / 2$ respectively.

