Applications of Partial Differentiation Extremes

Question

Find the minimum and maximum values of

$$
f(x, y)=x y e^{-x^{2}-y^{2}}
$$

Answer

$$
\begin{aligned}
f(x, y) & =x y e^{-x^{2}-y^{2}} \\
f_{1}(x, y) & =y\left(1-2 x^{2}\right) e^{-\left(x^{2}+y^{4}\right)} \\
f_{2}(x, y) & =x\left(1-4 y^{4}\right) e^{-\left(x^{2}+y^{4}\right)}
\end{aligned}
$$

For critical points $y\left(1-2 x^{2}\right)=0$ and $x\left(1-4 y^{4}\right)=0$. The critical points are:

$$
(0,0), \quad\left(\pm \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \quad\left(\pm \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)
$$

We have

$$
\begin{aligned}
f(0,0) & =0 \\
f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) & =f\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\frac{1}{2} e^{-3 / 4}>0 \\
f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) & =f\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=-\frac{1}{2} e^{-3 / 4}<0
\end{aligned}
$$

Since $f(x, y) \rightarrow \infty$ as $x^{2}+y^{2} \rightarrow \infty$, the maximum and minimum of f are

$$
\frac{1}{2} e^{-3 / 4} \text { and }-\frac{1}{2} \mathrm{e}^{-3 / 4}
$$

respectively.

