Applications of Partial Differentiation Extremes

Question

Find and classify the critical points of the function

$$
f(x, y)=x^{2} y e^{-\left(x^{2}+y^{2}\right)}
$$

Answer

$$
\begin{aligned}
f_{1}(x, y) & =2 x y\left(1-x^{2}\right) e^{-\left(x^{2}+y^{2}\right)} \\
f_{2}(x, y) & =x^{2}\left(1-2 y^{2}\right) e^{-\left(x^{2}+y^{2}\right)} \\
A=f_{11}(x, y) & =2 y\left(1-5 x^{2}+2 x^{4}\right) e^{-\left(x^{2}+y^{2}\right)} \\
B=f_{12}(x, y) & =2 x\left(1-x^{2}\right)\left(1-2 y^{2}\right) e^{-\left(x^{2}+y^{2}\right)} \\
C=f_{22}(x, y) & =2 x^{2} y\left(2 y^{2}-3\right) e^{-\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

For critical points

$$
\begin{aligned}
x y\left(1-x^{2}\right) & =0 \\
x^{2}\left(1-2 y^{2}\right) & =0
\end{aligned}
$$

The critical points are $(0, y) \forall y,(\pm 1,1 / \sqrt{2})$, and $(\pm 1,-1 / \sqrt{2})$.
Obviously $f(0, y)=0$.
Also $(x, y)>0$ if $y>0$ and $x \neq 0$, and $f(x, y)<0$ if $y<0$ and $x \neq 0$.
Thus f has a local minimum at $(0, y)$ if $y>0$, and a local maximum if $y<0$. the origin is a saddle point.
At $(\pm 1,1 / \sqrt{2}): A=C=-2 \sqrt{2} e^{-3 / 2}, B=0$, and so $A C>B^{2}$. Thus f has local maximum values at these two points.
At $(\pm 1,-1 / \sqrt{2}): A=C=2 \sqrt{2} e^{-3 / 2}, B=0$, and so $A C>B^{2}$. Thus f has local minimum values at these two points.
Since $f(x, y) \rightarrow 0$ as $x^{2}+y^{2} \rightarrow \infty$, the value

$$
f(\pm 1,1 / \sqrt{2})=e^{-3 / 2} / \sqrt{2}
$$

is the absolute maximum value for f, and the value

$$
f(\pm 1,-1 / \sqrt{2})=-e^{-3 / 2} / \sqrt{2}
$$

is the absolute minimum value.

