Applications of Partial Differentiation Extremes

Question

Find and classify the critical points of the function

$$
f(x, y)=\cos x+\cos y
$$

Answer

$$
\begin{aligned}
f_{1} & =-\sin x \\
f_{2} & =-\sin y \\
A & =f_{11}=-\cos x \\
B & =f_{12}=0 \\
C & =f_{22}=-\cos y
\end{aligned}
$$

The critical points are $(m \pi, n \pi)$ where m and n are integers.
Here $B^{2}-A C=-\cos (m \pi) \cos (n \pi)=(-1)^{m+n+1}$ which is negative if $m+n$ is even, and positive if $m+n$ is odd.
$m+n$ even: $\Rightarrow f$ has a saddle point at $(m \pi, n \pi) . m+n$ odd and m is odd: \Rightarrow f has local (and absolute) minimum value, -2 , at $(m \pi, n \pi) . m+n$ odd and m is even: $\Rightarrow f$ has a local (and absolute) maximum value, 2 , at $(m \pi, n \pi)$.

