Applications of Partial Differentiation Extremes

Question

Find and classify the critical points of the function

$$
f(x, y)=\frac{x}{y}+\frac{8}{x}-y
$$

Answer

$$
\begin{aligned}
& f_{1}(x, y)=\frac{1}{y}-\frac{8}{x^{2}}=0 \quad \text { if } 8 \mathrm{y}=\mathrm{x}^{2} \\
& f_{2}(x, y)=-\frac{x}{y^{2}}-1=0 \quad \text { if } \mathrm{x}=-\mathrm{y}^{2}
\end{aligned}
$$

For critical points: $8 y=x^{2}=y^{4}$, so $y=0$ or $y=2$. $f(x, y)$ is not defined when $y=0$, so the only critical point is $(-4,2)$. At $(-4,2)$ we have

$$
\begin{aligned}
& A=f_{11}=\frac{16}{x^{3}}=-\frac{1}{4} \\
& B=f_{12}=-\frac{1}{y^{2}}=-\frac{1}{4} \\
& C=f_{22}=\frac{2 x}{y^{3}}=-1
\end{aligned}
$$

Thus $B^{2}-A C=\frac{1}{16}-\frac{1}{4}<0$, and $(-4,2)$ is a local maximum.

