$\begin{array}{c} \textbf{Applications of Partial Differentiation} \\ \textbf{\textit{Extremes}} \end{array}$

Question

Find and classify the critical points of the function

$$f(x,y) = x^4 + y^4 - 4xy$$

Answer

$$f_1 = 4(x^3 - y)$$

$$f_2 = 4(y^3 - x)$$

$$A = f_{11} = 12x^2$$

$$B = f_{12} = -4$$

$$C = f_{22} = 12y^2$$

For critical points: $x^3 = y$ and $y^3 = x$. Thus $x^9 = x$, or $x(x^8 - 1) = 0$, and x = 0, 1, or -1.

The critical points are (0,0), (1,1) and (-1,-1).

At (0,0): $B^2 - AC = 16 - 0 > 0$, so (0,0) is a saddle point.

At (1,1) and (-1,-1): $B^2 - AC_16 - 144 < 0$, A > 0 so f has local maxima at these points.