Applications of Partial Differentiation Extremes

Question

Find and classify the critical points of the function

$$
f(x, y)=x^{4}+y^{4}-4 x y
$$

Answer

$$
\begin{aligned}
f_{1} & =4\left(x^{3}-y\right) \\
f_{2} & =4\left(y^{3}-x\right) \\
A & =f_{11}=12 x^{2} \\
B & =f_{12}=-4 \\
C & =f_{22}=12 y^{2} .
\end{aligned}
$$

For critical points: $x^{3}=y$ and $y^{3}=x$. Thus $x^{9}=x$, or $x\left(x^{8}-1\right)=0$, and $x=0,1$, or -1 .
The critical points are $(0,0),(1,1)$ and $(-1,-1)$. At $(0,0): B^{2}-A C=16-0>0$, so $(0,0)$ is a saddle point.
At $(1,1)$ and $(-1,-1): B^{2}-A C_{1} 6-144<0, A>0$ so f has local maxima at these points.

