Applications of Partial Differentiation Extremes

Question

Find and classify the critical points of the function

$$
f(x, y)=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{y}\right)
$$

Answer

$$
\begin{aligned}
f(x, y) & =\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{y}\right) \\
& =\frac{(x+1)(y+1)(x+y)}{x^{2} y^{2}} \\
f_{1}(x, y) & =-\frac{(y+1)(x y+x+2 y)}{x^{3} y^{2}} \\
f_{2}(x, y) & =-\frac{(x+1)(x y+y+2 x)}{x^{2} y^{3}} \\
A=f_{11}(x, y) & =\frac{2(y+1)(x y+x+3 y)}{x^{4} y^{2}} \\
B=f_{12}(x, y) & =\frac{2(x y+x+y)}{x^{3} y^{3}} \\
C=f_{22}(x, y) & =\frac{2(x+1)(x y+y+3 x)}{x^{2} y^{4}}
\end{aligned}
$$

For critical points

$$
\begin{aligned}
& y=-1 \quad \text { or } \quad x y+x+2 y=0 \\
& \text { and } \quad x=-1 \quad \text { or } \quad x y+y+2 x=0
\end{aligned}
$$

If $y=-1$, then $x=-1$ or $x-1=0$.
If $x=-1$, then $y=-1$ or $y-1=0$.
If $x \neq-1$ and $y \neq-1$, then $x-y=0$, so $x^{2}+3 x=0$.
Thus $x=0$ or $x=-3$. However, the definition of f excludes $x=0$. Thus, the only critical points are:

$$
(1,-1),(-1,1),(-1,-1), \text { and }(-3,-3)
$$

At $(1,-1),(-1,1)$ and $(-1,-1)$ we have $A C=0$ and $B \neq 0$. Therefore these three points are saddle points of f.
At $(-3,-3), A=C=4 / 243$ and $B=2 / 243$, so $A C>B^{2}$. Therefore f has a local minimum value at $(-3,-3)$.

