Applications of Partial Differentiation Extremes

Question

Find and classify the critical points of the function

$$
f(x, y)=x e^{-x^{3}+y^{3}}
$$

Answer

$$
\begin{aligned}
f_{1}(x, y) & =\left(1-3 x^{3}\right) e^{-x^{3}+y^{3}} \\
f_{2}(x, y) & =3 x y^{2} e^{-x^{3}+y^{3}} \\
A=f_{11}(x, y) & =3 x^{2}\left(3 x^{3}-4\right) e^{-x^{3}+y^{3}} \\
B=f_{12}(x, y) & =-3 y^{2}\left(3 x^{3}-1\right) e^{-x^{3}+y^{3}} \\
C=f_{22}(x, y) & =3 x y\left(3 y^{3}+2\right) e^{-x^{3}+y^{3}}
\end{aligned}
$$

For critical points: $3 x^{3}=1$ and $3 x y^{2}=0$. The only critical point is $\left(3^{-1 / 3}, 0\right)$. At that point we have $B=C=0$ so the second derivative test is inconclusive. However, note that $f(x, y)=f(x, 0) e^{y^{3}}$, and $e^{y^{3}}$ has an inflection point at $y=0$. Therefore $f(x, y)$ has neither a maximum nor a minimum value at $\left(3^{-1 / 3}, 0\right)$, so has a saddle point there.

