Applications of Partial Differentiation Extremes

Question

Find and classify the critical points of the function

$$
f(x, y)=\frac{x y}{2+x^{4}+y^{4}}
$$

Answer

$$
\begin{aligned}
f_{1} & =\frac{\left(2+x^{4}+y^{4}\right) y-x y 4 x^{3}}{\left(2+x^{4}+y^{4}\right)^{2}} \\
& =\frac{y\left(2+y^{4}-3 x^{4}\right)}{\left(2+x^{4}+y^{4}\right)^{2}} \\
f_{2} & =\frac{x\left(2+x^{4}-3 y^{4}\right)}{\left(2+x^{4}+y^{4}\right)^{2}}
\end{aligned}
$$

For critical points, $y\left(2+y^{4}-3 x^{4}\right)=0$ and $x\left(2+x^{4}-3 y^{4}\right)=0$.
One critical point is $(0,0)$. Since $f(0,0)=0$ but $f(x, y)>0$ in the first quadrant and $f(x, y)<0$ in the second quadrant, $(0,0)$ must be a saddle point of f.
Any other critical points must satisfy $2+y^{4}-3 x^{4}=0$ and $2+x^{4}-3 y^{4}=0$, that is $y^{4}=x^{4}$, or $y= \pm x$. Thus $2-2 x^{4}=0$ and $x= \pm 1$.
Therefore there are four other critical points: $(1,1),(-1,-1),(1,-1)$ and $(-1,1)$.
f is positive at the first two of these, and negative at the other two.
Since $f(x, y) \rightarrow 0$ as $x^{2}+y^{2} \rightarrow \infty, f$ must have maximum values at $(1,1)$ and $(-1,-1)$, and minimum values at $(1,-1)$ and $(-1,1) \dot{i}$

