Multiple Integration Double Integrals

Question

D is the disk $x^2 + y^2 \le 25$

P is the partition of the square $-5 \le x \le 5$, $-5 \le y \le 5$ into one hundred squares of dimensions 1×1 , shown below

$$J = \iint_D f(x, y) \, dA$$

where f(x, y) = 1.

Approximate J by calculating the Riemann sums R(f, P) with the given points (x_{ij}^*, y_{ij}^*) in the small squares. Use of symmetry will speed things up.

- (a) (x_{ij}^*, y_{ij}^*) is the corner of each square closest to the origin.
- (b) (x_{ij}^*, y_{ij}^*) is the corner of each square farthest from the origin.
- (c) $(x_{ij}^{\ast},y_{ij}^{\ast})$ is the centre of each square.
- (d) Evaluate J
- (e) Repeat 2(c), replacing f(x,y) = 1 with $f(x,y) = x^2 + y^2$.

Answer

$$J = \iint_D 1 \, dA$$

(a)
$$R = 4 \times 1 \times [5 + 5 + 5 + 5 + 4] = 96$$

(b)
$$R = 4 \times 1 \times [4 + 4 + 4 + 3 + 0] = 60$$

(c)
$$R = 4 \times 1 \times [5 + 5 + 4 + 4 + 2] = 80$$

(d)
$$J$$
 =area of disk= $\pi(5^2) \approx 78.54$

(e)
$$f(x,y) = x^2 + y^2$$
.

$$R = 4 \times 1 \times \left[f(\frac{1}{2}, \frac{1}{2}) + f(\frac{3}{2}, \frac{1}{2}) + f(\frac{5}{2}, \frac{1}{2}) + f(\frac{7}{2}, \frac{1}{2}) + f(\frac{9}{2}, \frac{1}{2}) \right]$$

$$+ f(\frac{1}{2}, \frac{3}{2}) + f(\frac{3}{2}, \frac{3}{2}) + f(\frac{5}{2}, \frac{3}{2}) + f(\frac{7}{2}, \frac{3}{2}) + f(\frac{9}{2}, \frac{3}{2})$$

$$+ f(\frac{1}{2}, \frac{5}{2}) + f(\frac{3}{2}, \frac{5}{2}) + f(\frac{5}{2}, \frac{5}{2}) + f(\frac{7}{2}, \frac{5}{2})$$

$$+ f(\frac{1}{2}, \frac{7}{2}) + f(\frac{3}{2}, \frac{7}{2}) + f(\frac{5}{2}, \frac{7}{2})$$

$$+ f(\frac{1}{2}, \frac{9}{2}) + f(\frac{3}{2}, \frac{9}{2}) \right]$$

$$= 918$$