Question

Write the following initial value problems in the form of an integral equation and hence find the solution using Picard iteration.
(a) $y^{\prime}=y \quad y(0)=1$
(b) $y^{\prime}=y^{2} \quad y(0)=1$
(c) $y^{\prime}=2 x(1+y) \quad y(0)=0$

Answer

(a) $y^{\prime}=y \quad y(0)=1$

The integral equation is $y(x)-1=\int_{0}^{x} y(t) d t$
Iteration $y_{n+1}(x)=1+\int_{0}^{x} y(t) d t, \quad y_{0}=1$
Hence,

$$
\begin{aligned}
& y_{1}(x)=1+\int_{0}^{x} d t=1+x \\
& y_{2}(x)=1+\int_{0}^{x}(1+t) d t=1+x+\frac{1}{2} x^{2} \\
& y_{3}(x)=1+\int_{0}^{x}\left(1+x+\frac{1}{2} x^{2}\right) d t=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}
\end{aligned}
$$

This suggests

$$
y_{n}(x)=1+x+\frac{x^{2}}{2}+\ldots+\frac{x^{n}}{n!}
$$

Prove this by induction:
True for $n=1$.
Suppose true for n then

$$
\begin{aligned}
y_{n+1}(x) & =1+\int_{0}^{x}\left(1+t+\frac{t^{2}}{2}+\ldots+\frac{t^{n}}{n!}\right) d t \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n+1}}{(n+1)!}
\end{aligned}
$$

So true for $n \Rightarrow$ true for $n+1$.

Since it was true for $n=1$ then by the induction hypothesis it is true for all $n \in \mathbf{N}$.
As $n \rightarrow \infty \quad y_{n}(x) \rightarrow y(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots=e^{x}$
(You can check that $y=e^{x}$ satisfies (1))
(b) $y^{\prime}=y^{2} \quad y(0)=1$

The integral equation is $y(x)-1=\int_{0}^{x} y^{2}(t) d t$
Iteration $y_{n+1}(x)=1+\int_{0}^{x} y^{2}(t) d t, \quad y_{0}=1$
Hence,

$$
\begin{aligned}
y_{1}(x) & =1+\int_{0}^{x} d t=1+x \\
y_{2}(x) & =1+\int_{0}^{x}(1+t)^{2} d t \\
& =1+x+x^{2}+\frac{x^{3}}{3} \\
y_{3}(x) & =1+\int_{0}^{x}\left(1+t+t^{2}+\frac{t^{3}}{3}\right)^{2} d t \\
& =1+\int_{0}^{x}\left(1+2 t+3 t^{2} \frac{8}{3} t^{3}+\frac{5}{3} t^{4}+\frac{2}{3} t^{5}+\frac{1}{9} t^{6}\right) d t \\
& =1+x+x^{2}+x^{3}+\frac{2}{3} x^{4}+\frac{1}{3} x^{5}+\frac{1}{9} x^{6}+\frac{x^{7}}{63}
\end{aligned}
$$

this suggests

$$
\begin{equation*}
y_{n}(x)=\left(1+x+x^{2}+\ldots+x^{n}\right) p_{n}(x) \tag{3}
\end{equation*}
$$

where $p_{n}(x)$ is some polynomial.
If $y_{n}(x)$ has the form (3) then:

$$
\begin{aligned}
& y_{n+1}(x)= 1+\int_{0}^{x}\left(1+t+t^{2}+\ldots+t^{n}+t^{n+1} p_{n}(t)\right)^{2} d t \\
&= 1+\int_{0}^{x}\left(1+2 t+3 t^{2}+\ldots+n t^{n}+t^{n+1} q_{n}(t)\right) d t \\
& \quad \quad \quad \quad\left(\text { where } q_{n}(t) \text { is some polynomial }\right) \\
&= 1+x+x^{2}+\ldots+x^{n+1}+x^{n+2} r_{n+1}(x)
\end{aligned}
$$

(where $r_{n}(x)$ is some polynomial)

Hence it seems reasonable to suppose that as $n \rightarrow \infty$

$$
y_{n}(x) \rightarrow y(x)=1+x+x^{2}+x^{3}+\ldots=(1-x)^{-1}
$$

In fact one can prove this for $|x|<1$ by looking more carefully at the remainder term.
One can check that $y=\frac{1}{1-x}$ is a solution of (1).
(c) $y^{\prime}=2 x(1+y) \quad y(0)=0$

The integral equation is $y(x)=\int_{0}^{x} 2 t(1+y(t)) d t$
Iteration:

$$
\begin{aligned}
y_{n+1}(x) & =\int_{0}^{x} t\left(1+y_{n}(t)\right) d t \quad y_{0}=0 \\
y_{1}(x) & =\int_{0}^{x} 2 t d t=x^{2} \\
y_{2}(x) & =\int_{0}^{x} 2 t\left(1+t^{2}\right) d t \\
& =x^{2}+\frac{x^{4}}{2} \\
y_{3}(x) & =\int_{0}^{x} 2 t\left(1+t^{2}+\frac{t^{4}}{2}\right) d t \\
& =x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}
\end{aligned}
$$

This suggests

$$
\begin{equation*}
y_{n}(x)=x^{2}+\frac{x^{4}}{2!}+\ldots+\frac{x^{2 n}}{n!} \tag{3}
\end{equation*}
$$

If we assume this is true then

$$
\begin{aligned}
y_{n+1}(x) & =\int_{0}^{x} 2 t\left(1+t^{2}+\frac{t^{4}}{2!}+\ldots+\frac{t^{2 n}}{n!}\right) d t \\
& =\left(2 t+2 t^{3}+t^{5}+\ldots+\frac{2 t^{2 n+1}}{(n+1)!}\right) d t \\
& =x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\ldots+\frac{x^{2(n+1)}}{(n+1)!}
\end{aligned}
$$

Hence it is true for $n \Rightarrow$ true for $n+1$.
Also true for $n=1$ so by induction $y_{n}(x)=x^{2}+\frac{x^{4}}{2!}+\ldots+\frac{x^{2 n}}{n!}$
As $n \rightarrow \infty \quad y_{n}(x) \rightarrow y(x)=x^{2}+\frac{x^{4}}{2!}+\ldots=e^{x^{2}}-1$
and one can check that $y=e^{x^{2}}-1$ is a solution of (1)

