Question

By evaluating the relevant determinant, investigate for various values of a and b the type of solution set of the equations

$$x+3y-2z = 7$$

$$ax+6y-4z = 2-3b$$

$$2x+6y+bz = 14$$

Answer

The equations can be written as:

$$\begin{pmatrix} 1 & 3 & -2 \\ a & 6 & -4 \\ 2 & 6 & b \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7 \\ 2 - 3b \\ 14 \end{pmatrix}$$

whether we solve by inverting the coefficient matrix or with a determinant method (Cramer's rule), we have to work out its determinant.

If this determinant=0 we don't have an inverse, or alternatively, Cramer's rule will fail.

Thus we need to work out

$$\begin{vmatrix} 1 & 3 & -2 \\ a & 6 & -4 \\ 2 & 6 & b \end{vmatrix} = 1 \times \begin{vmatrix} 6 & -4 \\ 6 & b \end{vmatrix} - 3 \begin{vmatrix} a & -4 \\ 2 & b \end{vmatrix} + (-2) \begin{vmatrix} a & 6 \\ 2 & 6 \end{vmatrix}$$
$$= 6b + 24 - 3ab - 24 - 12a + 24$$
$$= 24 - 12a + 6b - 3ab$$
$$= 3(8 - 4a + 2b - ab)$$
$$= 3(2 - a)(4 + b)$$

So

(i) If $a \neq 2$ and $b \neq -4$ there is a unique solution, since $det \neq 0$. The planes meet at a point

1

(ii) If a = 2 and $b \neq -4$ then det = 0. The system is

$$x + 3y - 2z = 7$$
 (1)
 $2x + 6y - 4z = 2 - 3b$ (2)
 $2x + 6y + bz = 14$ (3)

$$(2) \Rightarrow x + 3y - 2z = 1 - 3\frac{b}{2}$$

$$cf(1) \Rightarrow x + 3y - 2z = 7$$

These are two parallel planes if $1-3\frac{b}{2}\neq 7 \Rightarrow b\neq 4$ So they're parallel and non intersecting:

(iii) If b = -4 but $a \neq 2$ we have

$$x + 3y - 2z = 7$$

 $ax + 6y - 4z = 14$
 $2x + 6y - 4z = 14$

- (3) is twice (1)
- (2) and (3) are not the same since $a \neq 2$

We have two coincident planes with an intersecting plane.

Thus the solution is a <u>line</u> of points not a single one.

(iv) If
$$a=2$$
 and $b=-4$ we get
$$x+3y-2z = 7 \\ ax+6y-4z = 14 \\ 2x+6y-4z = 14$$
 all the same equation!!!

We have 3-coincident planes.

===== 3 coincident planes

So a plane of x, y, z solutions, not a single point.