Question

By evaluating the relevant determinant, investigate for various values of a and b the type of solution set of the equations

$$
\begin{aligned}
x+3 y-2 z & =7 \\
a x+6 y-4 z & =2-3 b \\
2 x+6 y+b z & =14
\end{aligned}
$$

Answer

The equations can be written as:

$$
\left(\begin{array}{ccc}
1 & 3 & -2 \\
a & 6 & -4 \\
2 & 6 & b
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
7 \\
2-3 b \\
14
\end{array}\right)
$$

whether we solve by inverting the coefficient matrix or with a determinant method (Cramer's rule), we have to work out its determinant.
If this determinant $=0$ we don't have an inverse, or alternatively, Cramer's rule will fail.
Thus we need to work out

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 3 & -2 \\
a & 6 & -4 \\
2 & 6 & b
\end{array}\right| & =1 \times\left|\begin{array}{cc}
6 & -4 \\
6 & b
\end{array}\right|-3\left|\begin{array}{cc}
a & -4 \\
2 & b
\end{array}\right|+(-2)\left|\begin{array}{cc}
a & 6 \\
2 & 6
\end{array}\right| \\
& =6 b+24-3 a b-24-12 a+24 \\
& =24-12 a+6 b-3 a b \\
& =3(8-4 a+2 b-a b) \\
& =3(2-a)(4+b)
\end{aligned}
$$

So
(i) If $a \neq 2$ and $b \neq-4$ there is a unique solution, since $\operatorname{det} \neq 0$. The planes meet at a point

(ii) If $a=2$ and $b \neq-4$ then det $=0$. The system is

$$
\begin{align*}
x+3 y-2 z & =7 \\
2 x+6 y-4 z & =2-3 b \tag{2}\\
2 x+6 y+b z & =14
\end{align*}
$$

(2) $\Rightarrow x+3 y-2 z=1-3 \frac{b}{2}$
cf $(1) \Rightarrow x+3 y-2 z=7$
These are two parallel planes if $1-3 \frac{b}{2} \neq 7 \Rightarrow b \neq 4$
So they're parallel and non intersecting:

(iii) If $b=-4$ but $a \neq 2$ we have

$$
\begin{aligned}
x+3 y-2 z & =7 \\
a x+6 y-4 z & =14 \\
2 x+6 y-4 z & =14
\end{aligned}
$$

(3) is twice (1)
(2) and (3) are not the same since $a \neq 2$

We have two coincident planes with an intersecting plane.

Thus the solution is a line of points not a single one.
(iv) If $a=2$ and $b=-4$ we get

$$
\left.\begin{array}{rl}
x+3 y-2 z & =7 \\
a x+6 y-4 z & =14 \\
2 x+6 y-4 z & =14
\end{array}\right\} \text { all the same equation!!! }
$$

We have 3-coincident planes.
$\overline{\bar{\Longrightarrow}} 3$ coincident planes

So a plane of x, y, z solutions, not a single point.

