Question

Find the value of k for which the equations

$$
\begin{array}{r}
x+2 y=0 \\
3 x+k y-z=0 \\
2 x+5 y-2 z=0
\end{array}
$$

have a solution, other than $x=y=z=0$. Find the solution set for this value of k.

Answer

$$
\begin{array}{r}
x+2 y=0 \\
3 x+k y-z=0 \\
2 x+5 y-2 z=0 \tag{3}
\end{array}
$$

Obviously $x=0 y=0 z=0$ are solutions. Easiest way to do this is to systematically eliminate; since (1) is a "nice" equation:
(1) $\Rightarrow x=-2 y \downarrow$
$\Rightarrow(2)$ becomes $3(-2 y)+k y-z=0$
(3) becomes $2(-2 y)+5 y-2 z=0$

Hence

$$
\begin{array}{r}
(k-6) y-z=0 \\
y-2 z=0 \tag{5}
\end{array}
$$

(5) $\Rightarrow y=2 z$

Therefore $(k-6)(2 z)-z=0$

$$
\begin{equation*}
\Rightarrow(2 k-13) z=0 \tag{6}
\end{equation*}
$$

Now from (6) we could have $z=0 \Rightarrow y=0 \Rightarrow x=0$. This isn't what we want. Another way to satisfy (60 is to have $k=\frac{13}{2}$. In this case z could be anything, say $z=\lambda$. Hence from (5), $y=2 \lambda$ and from (1), $x=-4 \lambda$. Hence the solution is

$$
x=-4 \lambda, y=2 \lambda, z=\lambda
$$

or $-\frac{x}{4}=\frac{y}{2}=z$, the equation of a line in 3-D.

