Question

Find the value of k for which the equations

$$x + 2y = 0$$
$$3x + ky - z = 0$$
$$2x + 5y - 2z = 0$$

have a solution, other than x = y = z = 0. Find the solution set for this value of k.

Answer

$$x + 2y = 0$$
 (1)
 $3x + ky - z = 0$ (2)
 $2x + 5y - 2z = 0$ (3)

Obviously x = 0 y = 0 z = 0 are solutions. Easiest way to do this is to systematically eliminate; since (1) is a "nice" equation:

$$(1) \Rightarrow x = -2y \downarrow$$

$$\Rightarrow (2) \text{ becomes } 3(-2y) + ky - z = 0$$

(3) becomes 2(-2y) + 5y - 2z = 0

Hence

$$(k-6)y-z = 0$$
 (4)
 $y-2z = 0$ (5)

$$(5) \Rightarrow y = 2z$$
Therefore $(k-6)(2z) - z = 0$

$$\Rightarrow (2k-13)z = 0 \quad (6)$$

Now from (6) we could have $z=0 \Rightarrow y=0 \Rightarrow x=0$. This isn't what we want. Another way to satisfy (60 is to have $k=\frac{13}{2}$. In this case z could be anything, say $z=\lambda$. Hence from (5), $y=2\lambda$ and from (1), $x=-4\lambda$. Hence the solution is

$$x = -4\lambda, y = 2\lambda, z = \lambda$$

or $-\frac{x}{4} = \frac{y}{2} = z$, the equation of a line in 3-D.