Question

Solve the equations

$$
\begin{aligned}
3 x+2 y-z & =4 \\
2 x-5 y+2 z & =1 \\
5 x+16 y-7 z & =10
\end{aligned}
$$

by Gaussian elimination.

Answer

Augmented matrix is
r_{1}
r_{2}
$r_{3}$$\left(\begin{array}{ccc|c}3 & 2 & -1 & 4 \\ 2 & -5 & 2 & 1 \\ 5 & 16 & -7 & 10\end{array}\right)$

Want to get this in the upper echelon form
$\left(\begin{array}{ccc|c}a & \cdot & \cdot & \cdot \\ 0 & b & \cdot & \cdot \\ 0 & 0 & c & \cdot\end{array}\right)$
Carry out elementary row operations: $\overline{r_{3}}=r_{3}-\left(r_{1}+r_{2}\right)$
$\overline{r_{1}}$
$\overline{r_{2}}$
$\overline{r_{3}}$$\left(\begin{array}{ccc|c}3 & 2 & -1 & 4 \\ 2 & -5 & 2 & 1 \\ 0 & 19 & -8 & 5\end{array}\right)$
$\overline{\overline{r_{2}}}=3 \overline{r_{2}}$
$\stackrel{\overline{\overline{r_{1}}} \overline{\overline{r_{2}}}}{\overline{\overline{r_{3}}}}\left(\begin{array}{ccc|c}3 & 2 & -1 & 4 \\ 6 & -15 & 6 & 3 \\ 0 & 19 & -8 & 5\end{array}\right)$
$\overline{\overline{r_{2}}}=\overline{\overline{r_{2}}}-2 \overline{\overline{r_{1}}}$
$\stackrel{\overline{\overline{r_{1}}}}{\overline{\overline{r_{2}}}} \overline{\overline{\overline{r_{3}}}}\left(\begin{array}{ccc|c}3 & 2 & -1 & 4 \\ 0 & -19 & 8 & -5 \\ 0 & 19 & -8 & 5\end{array}\right)$
$r_{3}^{(i v)}=\overline{\overline{r_{2}}}+\overline{\overline{r_{3}}}$
$r_{1}{ }^{(i v)}$
$r_{2}{ }^{(i v)}$
$r_{3}{ }^{(i v)}$$\left(\begin{array}{ccc|c}3 & 2 & -1 & 4 \\ 0 & -19 & 8 & -5 \\ 0 & 0 & 0 & 0\end{array}\right)$
We are in trouble! The third row has vanished, and hence the third equation is a linear combination of the other two. It is linearly dependent and thus gives no further information. (This could have been spotted originally by considering
$\operatorname{det}\left(\begin{array}{ccc}3 & 2 & -1 \\ 2 & -5 & 2 \\ 5 & 16 & -7\end{array}\right)=9+48-57=0$.

Hence no inverse exists)
We thus have a rank 2 system (only 2 equations in 3 unknowns).
To solve the system we assign z arbitrarily, say $z=\lambda$ and then solve

$$
\begin{align*}
3 x+2 y-\lambda & =4 \tag{1}\\
-19 y+8 \lambda & =-5
\end{align*}
$$

(2) $\Rightarrow y=\frac{8 \lambda+5}{19}$

Therefore in (1) $3 x+\frac{16 \lambda}{19}+\frac{10}{19}-\lambda=4$

$$
x=\frac{(22+\lambda)}{19}
$$

or $19 x-22=\frac{19 y-5}{8}=z$ a line in 3-D. Here we have case 3 .

