Question

Find the inverses of the following matrices and verify that they are correct.
(i) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(ii) $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
(iii) $C=\left(\begin{array}{ll}2 & -2 \\ 6 & -3\end{array}\right)$

Answer

(i) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \Rightarrow \operatorname{det} A=0-1=-1$
and $A^{-1}=\frac{1}{-1}\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
i.e., $A^{-1}=A!!!$

Check $A^{-1} A=I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$A^{-1} A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \sqrt{ }$
Should also check $A A^{-1}=I_{2}$ (obvious here)
(ii) $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) \Rightarrow \operatorname{det} B=1 \times 0-1 \times 1=-1$
and $B^{-1}=\frac{1}{-1}\left(\begin{array}{cc}0 & -1 \\ -1 & 1\end{array}\right)=\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)$
Check $B^{-1} B=\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I_{2} \sqrt{ }$
$B B^{-1}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I_{2} \sqrt{ }$
(iii) $C=\left(\begin{array}{ll}2 & -2 \\ 6 & -3\end{array}\right) \Rightarrow \operatorname{det} B=-6-(-12)=6$

$$
\text { and } C^{-1}=\frac{1}{6}\left(\begin{array}{ll}
-3 & 2 \\
-6 & 2
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{1}{3} \\
-1 & \frac{1}{3}
\end{array}\right)
$$

Check $C^{-1} C=\left(\begin{array}{cc}-\frac{1}{2} & \frac{1}{3} \\ -1 & \frac{1}{3}\end{array}\right)\left(\begin{array}{cc}2 & -2 \\ 6 & -3\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)=I_{2} \sqrt{ }$
$C C^{-1}=\left(\begin{array}{cc}2 & -2 \\ 6 & -3\end{array}\right)\left(\begin{array}{cc}-\frac{1}{2} & \frac{1}{3} \\ -1 & \frac{1}{3}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)=I_{2} \sqrt{ }$

