Question

Let $n \geq 4$ be an integer that is not prime. Show that the integers modulo n, \mathbf{Z}_{n}, is not a field.
Answer
Write n as a product $n=a \cdot b$, where $2 \leq a, b<n$, so that a and b are not equal in \mathbf{Z}_{n}. Then, in \mathbf{Z}_{n}, the product $a \cdot b$ is 0 , being a multiple of n. However, if \mathbf{Z}_{n} were a field, then a would have a multiplicative inverse a^{-1}, and we could multiply both sides of $a \cdot b=0$ on the left to obtain $a^{-1} \cdot a \cdot b=a^{-1} \cdot 0$, which simplifies to $b=0$. This contradicts the choice of b to satisfy $2 \leq b<n$, and so a has no multiplicative inverse, contradicting the definition of a field.

