Question

Prove that there does not exist an order on the complex numbers \mathbf{C} so that C becomes an ordered field.

Answer

Suppose there were such an order on \mathbf{C}, and denote it by $<$. Compare 0 and i. Since $0 \neq \mathrm{i}$, it must be that either $0<\mathrm{i}$ or $\mathrm{i}<0$.

Suppose that $0<i$. Multiplying both sides by i and remembering that $0<i$, we see that $0 \cdot \mathrm{i}<\mathrm{i} \cdot \mathrm{i}$, which simplifies to $0<-1$. Adding 1 to both sides, we see that $1<0$. Again multiplying both sides by i and remembering that $0<\mathrm{i}$, we see that $1 \cdot \mathrm{i}<0 \cdot \mathrm{i}$, which simplifies to $\mathrm{i}<0$. Hence, if $0<\mathrm{i}$, then $\mathrm{i}<0$, contradicting the second condition in the definition of an order.
Suppose now that $\mathrm{i}<0$. Adding the additive inverse -i of i to both sides, we get that $0<-\mathrm{i}$. Multiplying both sides by -i , we get that $0 \cdot(-\mathrm{i})<$ $(-\mathrm{i}) \cdot(-\mathrm{i})$, and so $0<-1$. Multiplying both sides by -i again, we get that $0<(-1) \cdot(-\mathrm{i})=\mathrm{i}$. Hence, if $\mathrm{i}<0$, then then $0>\mathrm{i}$, again contradicting the second condition in the definition of an order.

Hence, since we have that neither $0<$ i nor $\mathrm{i}<0$, we see that there cannot exist an order on \mathbf{C} that makes \mathbf{C} into an ordered field.

