Question

Consider the EUROPEAN AVERAGE RATE option with expiry T whose value is governed by the partial differential equation

$$
V_{t}+(\log S) V_{I}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}+r S V_{S}-r V=0
$$

where the independent variable I is defined by

$$
I=\int_{0}^{t} \log S(\tau) d \tau
$$

(a) By considering definition of I, and the quantity

$$
Q=\left(\sum_{i=1}^{n} S\left(t_{i}\right)\right)^{\frac{1}{n}}
$$

in the limit $n \rightarrow \infty$ or otherwise, explain what kind of average is being used in the average rate option.
(b) If the payoff of the option is a function of I only, show that solutions of the form

$$
\begin{aligned}
V & =F(\theta, t) \\
\theta & =\frac{I+(T-t) \log S}{T}
\end{aligned}
$$

exist provided F satisfies

$$
F_{t}+a(t) F_{\theta \theta}+b(t) F_{\theta}-r F=0 \longrightarrow(1)
$$

where $a(t)$ and $b(t)$ are functions that should be determined.
(c) Explain briefly why (1) is easier to solve than the original problem. If the payoff of the option depends on S as well as I, does this method still work?

Answer

We have

$$
\begin{gathered}
V_{t}+(\log S) V_{I}+\frac{1}{2} \sigma^{2} S 62 V_{S S}+r S V_{S}-r V=0 \\
I=\int_{0}^{t} \log S(\tau) d \tau
\end{gathered}
$$

(a) Consider $Q=\left(\prod_{i=1}^{n} S\left({ }_{i}\right)\right)^{\frac{1}{n}}$.

Now

$$
Q=\frac{1}{n} \log \left(\prod_{i=1}^{n} S\left(i_{i}\right)\right)
$$

But since $\log \left(a_{1} a_{2} \cdots a_{n}\right)=\sum \log a_{i}$

$$
\Rightarrow \log Q=\frac{1}{n} \sum_{i=1}^{n} \log \left(S\left(t_{i}\right)\right) .
$$

Now the total time of the option is finite so say

$$
\begin{aligned}
n d t & =T=t_{n} \\
\Rightarrow \log Q & =\frac{1}{T} \sum_{i=1}^{n} \log S(n d t) d t
\end{aligned}
$$

In the limit as $n \rightarrow \infty$ we therefore find that

$$
\log Q \rightarrow \frac{1}{T} \int_{0}^{T} \log S(\tau) d \tau
$$

i.e. in the limit as $n \rightarrow \infty$

$$
Q \rightarrow \exp \left(\frac{1}{T} \int_{0}^{T} \log S(\tau) d \tau\right)
$$

Now Q is clearly the GEOMETRIC average of S. So the option is a average strike with a GEOMETRIC AVERAGE.
(b) Now we have

$$
V=F(\theta, t), \quad \theta=\frac{I+(T-t) \log S}{T}
$$

$$
\begin{aligned}
V_{t} & =F_{\theta} \theta_{t}+F_{t} t_{t}=F_{\theta}\left(-\frac{1}{T} \log S\right)+F_{t} \\
V_{I} & =F_{\theta} \theta_{I}+F_{t} t_{I}=\frac{1}{T} F_{\theta}+0 \\
& =\frac{1}{T} F_{\theta} \\
V_{S} & =F_{\theta} \theta_{S}+F_{t} t_{S}=F_{\theta}\left(\frac{T-t}{S T}\right)+0 \\
& =F_{\theta}\left(\frac{T-t}{S T}\right) \\
V_{S} S & =\left[F_{\theta}\left(\frac{T-t}{S T}\right)\right]_{S}=F_{\theta \theta} \theta_{S}\left(\frac{T-t}{S T}\right)-F_{\theta}\left(\frac{T-t}{T S^{2}}\right) \\
& =F_{\theta \theta}\left[\frac{T-t}{S T}\right]^{2}-F_{\theta}\left[\frac{T-t}{T S^{2}}\right] .
\end{aligned}
$$

Substitute in the equation:-

$$
\begin{aligned}
F_{t}- & \frac{1}{2}(\log S) F_{\theta}+(\log S)\left(\frac{1}{T} F_{\theta}\right)-r F+r S F_{\theta}\left(\frac{T-t}{S T}\right) \\
& +\frac{1}{2} \sigma^{2} S^{2}\left[F_{\theta \theta}\left(\frac{T-t}{S T}\right)^{2}-F_{\theta}\left(\frac{T-t}{T S^{2}}\right)\right]=0
\end{aligned}
$$

Now rearranging gives

$$
\begin{aligned}
F_{t}+\frac{\sigma^{2}}{2} \frac{(T-t)^{2}}{T^{2}} F_{\theta \theta}+F_{\theta}\left(\frac{r(T-t)}{T}-\frac{1}{2} \sigma^{2}\left(\frac{T-t}{T}\right)\right) & \\
-r F & =0 \\
F_{t}+\frac{\sigma^{2}}{2} \frac{(T-t)^{2}}{T^{2}} F_{\theta \theta}+\left(\frac{T-t}{T}\right)\left(r-\frac{\sigma^{2}}{2}\right) F_{\theta}-r F & =0 \\
\text { i.e. } \mathrm{F}_{\mathrm{t}}+\mathrm{a}(\mathrm{t}) \mathrm{F}_{\theta \theta}+\mathrm{b}(\mathrm{t}) \mathrm{F}_{\theta}-\mathrm{rF} & =0
\end{aligned}
$$

Where

$$
a(t)=\frac{\sigma^{2}}{2} \frac{(T-t)^{2}}{T^{2}}, \quad b(t)=\left(\frac{T-t}{T}\right)\left(r-\frac{\sigma^{2}}{2}\right) .
$$

(c) The equation just derived is a PDE , but it only has 2 independent variable, as opposed to original equation which has $3(t, I$ and $S)$. The new problem is thus 'one dimension easier' to solve.

If the payoff depends on S as well as I, then this transformation cannot work, for at $t=T$ (i.e. at expiry when the payoff takes place)

$$
\theta=\frac{I+(T-t) \log S}{T}=\frac{I}{T}
$$

Thus $V=f(I / T, t)$ and cannot therefore be made to depends upon S.

