Question

A PATH-DEPENDENT European option with expiry T is a European option whose payoff is dependent on $S(T)$ and the quantity

$$
\int_{0}^{T} f(S(\tau), \tau) d \tau
$$

where f is a given function of S and t. By defined a new independent variable

$$
I=\int_{0}^{t} f(S(\tau), \tau) d \tau
$$

show that the stochastic differential equation satisfied by I is

$$
d I=f(S, t) d t
$$

Use this result and an appropriate form of Ito's lemma to show that the partial differential equation satisfied by such options is

$$
V-t+f(S, t) V_{I}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}+r S V_{S}-r V=0
$$

Now consider the EUROPEAN AVERAGE STRIKE option where

$$
f(S, t)=S(t)
$$

Show that the partial differential equation is satisfied by solutions of the form

$$
V=S U(\eta, t) \quad(\eta=I / S)
$$

provided that U satisfies a given partial differential equation (which you should derive).

Answer

For the PATH-DEPENDENT option we have a payoff dependent on S AND $\int_{0}^{T} f(S(\tau), \tau) d \tau$.
Define the new indpt variable

$$
I=\int_{0}^{t} f(S(\tau), \tau) d \tau
$$

Then

$$
\begin{aligned}
I(t+d t) & =I+d I=\int_{0}^{t+d t} f(S(\tau), \tau) d \tau \\
& =\int_{0}^{t} f(S(\tau), \tau) d \tau+\int_{t}^{t+d t} f(S(\tau), \tau) d \tau \\
& =I+f(S(t), t) d t \\
\Rightarrow d I & =f(S, t) d t
\end{aligned}
$$

Now Ito's lemma will be exactly the same as normal, save for the addition of an $f(S, t) V_{I}$ term (since $d I$ has no random component).

$$
d V=\sigma S V_{S} d X+\left(\frac{1}{2} \sigma^{2} S_{S S}^{V}+r S V_{S}+V_{t}+f(S, t) V_{I}\right) d t
$$

Now consider a portfolio $\Pi=V-\Delta S$ as usual.
We have

$$
\begin{aligned}
d \Pi= & d V-\Delta d S \\
= & -\Delta(\sigma S d X+r S d t)+d V \\
= & \left(\sigma S V_{S}-\Delta \sigma S\right) d X \\
& +\left(\frac{1}{2} \sigma^{2} S^{2} V_{S S}+r S V_{S}+V_{t}+f(S, t) V_{I}-r S \Delta\right) d t
\end{aligned}
$$

As usual, eliminate randomness by choosing $\Delta=V_{S}$

$$
\Rightarrow d \Pi=\left(\frac{1}{2} \sigma^{2} S^{2} V_{S}+V_{t}+f(S, t) V_{I}\right) d t=r \Pi d t
$$

by using the usual arbitrage argument that since $d \Pi$ is riskless, it must grow at the risk free rate.

$$
\begin{gathered}
\Rightarrow \frac{1}{2} \sigma^{2} S^{2} V_{S S}+V_{t}+f(S, t) V_{I}=r\left(V-S V_{S}\right) \\
\Rightarrow V_{t}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}+f(S, t) V_{I}+r S V_{S}-r V=0
\end{gathered}
$$

- Black-Scholes for a path dependent option.

Now consider $V=S U(\eta, t) \quad \eta=I / S$
We have

$$
\begin{aligned}
V_{t} & =S U_{t} \\
V_{I} & =S U_{\eta} / S=U_{\eta} \\
V_{S} & =U+S U_{\eta}\left(-\frac{I}{S^{2}}\right)=U-\left(\frac{I}{S}\right) U_{\eta} \\
V_{S S} & =U_{S}+\left(\frac{I}{S^{2}}\right) U_{\eta}-\left(\frac{I}{S}\right) U_{\eta \eta}\left(-\frac{I}{S^{2}}\right) \\
& =U_{\eta}\left(-\frac{I}{S^{2}}\right)+\left(\frac{I}{S^{2}}\right) U_{\eta}+\left(\frac{I^{2}}{S^{2}}\right) U_{\eta \eta} \\
& =\left(\frac{I^{2}}{S^{3}}\right) U_{\eta \eta}
\end{aligned}
$$

So in the previous equation we get

$$
\begin{aligned}
S U_{t}+\frac{1}{2} \sigma^{2} S^{2} \frac{S^{2} I^{2}}{S^{3}} U_{\eta \eta}+S U_{\eta}+r S\left(U-\frac{I}{S} U_{\eta}\right)-r S U & =0 \\
U_{t}+\frac{1}{2} \sigma^{2} \frac{I^{2}}{S^{2}} U_{\eta \eta}+U_{\eta}\left[1-\frac{r I}{S}\right]+r U-r U & =0 \\
\Rightarrow U_{t}+\frac{1}{2} \sigma^{2} \eta^{2} U_{\eta \eta}+[1-r \eta] U_{\eta} & =0
\end{aligned}
$$

