## Question

(a) Suppose that $U(S, t)$ satisfies the Black-Scholes equation. Show that if $V$ is defined by

$$
U(S, t)=S^{n} V(\eta, t)
$$

where $\eta=K / S$ and $K$ and $n$ are constant then

$$
V_{t}+\frac{1}{2} \sigma^{2} V_{\eta \eta}+r \eta V_{\eta}-r V=0
$$

provided $n$ takes a particular value (which you should determine).
(b) A European DOWN-AND-OUT Call with strike $E$, expiry $T$ and barrier $X$ is identical to a European Call option except for the fact that the option cannot be exercised if the price of the underlying ever drops below $X$. Explain briefly why the value $D(S, t)$ of such an option must satisfy $D(X, t)=0$ and $D(X, T)=\max [S-E, 0]$. Using the result of part (a) or otherwise show that, if $C(S, t)$ denotes the value of a European Call option with strike $E$ and expiry $T$, then

$$
D(S, t)=C(S, t)-A S^{1-2 r / \sigma^{2}} C(K / S, t)
$$

where $A$ and $K$ are constants (which you should determine).
(c) By considering the payoff of a portfolio which is long one down-and-out Call and long one down-and-in Call, determine the value of a down-and-in Call.

## Answer

(a) Since $U$ satisfies Black-Scholes we have

$$
U_{t}+\frac{1}{2} \sigma^{2} S^{2} U_{S S}+r S U_{S}-r U=0
$$

Now put $U=S^{n} V(\eta, t)$ where $\eta=K / S$.
Then

$$
\begin{aligned}
U_{t} & =\left(S^{n} V\right)_{\eta} \eta_{t}+\left(S^{n} V\right)_{t} t_{t}=0+S^{n} V_{t} \\
& =S^{n} V_{t} \\
U_{S} & =n S^{n-1} V+S^{n} V_{S}=n S^{n-1} V+S^{n} V_{\eta} \eta_{S} \\
& =n S^{n-1} V-\eta S^{n-1} V_{\eta}
\end{aligned}
$$

also

$$
\begin{aligned}
U_{S S}= & n(n-1) S^{n-2} V+n S^{n-1} V_{\eta}\left(-\frac{K}{S^{2}}\right) \\
& -(n-2) K S^{n-3} V_{\eta}-K S^{n-2} V_{\eta \eta}\left(-\frac{K}{S^{2}}\right) \\
= & n(n-1) S^{n-2} V-\eta S^{n-2} n B_{\eta}-(n-2) S^{n-2} \eta V_{\eta} \\
& +S^{n-2} \eta^{2} V_{\eta \eta} \\
\Rightarrow & \\
S^{n} V_{t}+ & \frac{1}{2} \sigma^{2} S^{2}\left[n(n-1) S^{n-2} V-S^{n-2} n \eta V_{\eta}-(n-2) S^{n-2} \eta V\right. \\
+ & \left.\eta+S^{n-2} \eta^{2} V_{\eta \eta}\right] \\
+ & r S\left[n S^{n-1} V-S^{n-1} \eta V_{\eta}\right]-r S^{n} V=0
\end{aligned}
$$

Canceling $S^{n}$ and re-arranging gives

$$
\begin{gathered}
V_{t}+V_{\eta \eta}\left[\eta^{2} \frac{1}{2} \sigma^{2}\right]+\left[-\frac{n \sigma^{2}}{2}-\frac{\sigma^{2}}{2}(n-2)-r\right] \eta V_{\eta} \\
+V\left[\frac{1}{2} \sigma^{2}(n-1) N+r n-r\right]=0
\end{gathered}
$$

So to get back to Black-Scholes again we need $n$ such that

$$
\begin{aligned}
-\frac{n \sigma^{2}}{2}-\frac{\sigma^{2}}{2} n+\sigma^{2} & =2 r \\
\Rightarrow n & =1-\frac{2 r}{\sigma^{2}}
\end{aligned}
$$

With this value, the coefficient of V becomes

$$
\frac{\sigma^{2}}{2}\left(1-\frac{2 r}{\sigma^{2}}\right)\left(-\frac{2 r}{\sigma^{2}}\right)-\frac{2 r^{2}}{\sigma^{2}}=-r
$$

Thus with $n=1-2 r / \sigma^{2}$ we DO get back to B/Scholes.
(b) For a European Down-and-out call the payoff at expiry is the same as a vanilla call IF the option is exercised. Thus at expiry T

$$
D(S, T)=\max (\mathrm{S}-\mathrm{E}, 0)
$$

Also, the option becomes worthless $\forall t$ the instant that the share price hits $S=X$ and thus

$$
D(X, t)=0
$$

Now consider $D(S, t)=C(S, t)-A S^{1-\frac{2 r}{\sigma^{2}}} C\left(\frac{K}{S}, t\right)$.
We have to show that this satisfies 3 things:-
(i) Must satisfy Black-Scholes. Well $C(S, t)$ does by definition and by part (a) of this question so does $S^{1-\frac{2 r}{\sigma^{2}}} C(K / S, t)$.
The linearity of Black-Scholes now ensures that we may add solutions $\Rightarrow$ Black-Scholes is satisfied.
(ii) We must ensure that $D(X, t)=0 \forall t$. Now

$$
D(X, t)=C(X, t)-A X^{1-\frac{2 r}{\sigma^{2}}} C(K / X, t)
$$

and clearly we can fix this up to be zero if we choose

$$
A=X^{-\left(1-\frac{2 r}{\sigma^{2}}\right)}, \quad K=X^{2}
$$

(iii) We must ensure finally that $B(S, T)=\max (\mathrm{S}-\mathrm{E}, 0)$.

But

$$
\begin{aligned}
B(S, T) & =C(S, T)-(S / X)^{1-\frac{2 r}{\sigma^{2}}} C\left(X^{2} / S, T\right) \\
& =\max (\mathrm{S}-\mathrm{E}, 0)-(\mathrm{S} / \mathrm{X})^{1-\frac{2 r}{\sigma^{2}}} \max \left(\mathrm{X}^{2} / \mathrm{S}-\mathrm{E}, 0\right)
\end{aligned}
$$

But for sure $S>X$ and $E>X$ so $\left.X^{2} / S-E<\right)$

$$
\Rightarrow B(S, T)=\max (\mathrm{S}-\mathrm{E}, 0)
$$

as it should.
(c) Let $\Pi-D_{i}(S, t)+D_{0}(S, t)$

Then obviously

$$
\Pi=C(S, t)
$$

since whether the barrier is triggered or not the option will be the same as a European call.

$$
\begin{aligned}
\Rightarrow D_{i}(S, t)+D_{0}(S, t)= & C(S, t) \\
\Rightarrow D_{i}(S, t)= & C(S, t) \\
& -\left[C(S, t)-(S / X)^{1-\frac{2 r}{\sigma^{2}}} C\left(X^{2} / S, t\right)\right] \\
D_{i}(S, t)= & \frac{S}{X}^{1-\frac{2 r}{\sigma^{2}}} C\left(X^{2} / S, t\right)
\end{aligned}
$$

