Question

Consider a portfolio Π which is composed of a proportion $\lambda < 1$ of a risk free asset S_0 with associated return R_0 and a proportion $1 - \lambda$ of a risky portfolio S_1 with associated return R_1 and variance σ_1^2 . Show that as λ varies, Π lies along a straight line in the risk/reward diagram, the line having slope $\theta = (R_1 - R_0)/\sigma_1$. Explain briefly why this implies that the problem of finding the capital market line reduces to that of maximizing θ over all risky portfolios.

Now consider a scenario where there are three risky assets S_1 , S_2 and S_3 with respective expected returns

$$R_1 = 0.08, \quad R_2 = 0.10, \quad R_3 = 0.12.$$

The variances and covariances between the assets are given by

$$\sigma_1^2 = 0.008$$
 $\sigma_{12} = 0.004$
 $\sigma_{13} = 0$
 $\sigma_2^2 = 0.006$
 $\sigma_{23} = 0.002$
 $\sigma_3^2 = 0.008$

and the risk free rate is 0.05. Short selling and borrowing are allowed. Show that the optimal portfolio of risky assets consists of investing proportions 1/11, 4/11 and 6/11 of one's total wealth in S_1 , S_2 and S_3 respectively. Show that the associated risk and return are $\sqrt{520/121} \sim 2.07\%$ and $120/11 \sim 10.91\%$ respectively, and the market price of risk is

$$\theta = \frac{\sqrt{130}}{4} \sim 2.85$$

Answer

We have $\Pi = \lambda S_0 + (1 - \lambda)S_1$ and thus

$$R_{\Pi} = \lambda R_0 + (1 - \lambda) R_1.$$

For the portfolio variance σ_{Π}^2 we have

$$\sigma_{\Pi}^2 = \lambda^2 \sigma_0^2 + 2\lambda (1 - \lambda)\sigma_{01} + (1 - \lambda)^2 \sigma_1^2$$

But S_0 is riskless, so by definition $\sigma_0 = 0$, $\sigma_{01} = 1$. Thus

$$\sigma_{\Pi}^2 = (1 - \lambda)^2 \sigma_1^2$$

 $\Rightarrow \sigma_{\Pi} = (1 - \lambda)\sigma_1$

Now

$$\lambda < 1 \implies 1 - \lambda > 0$$

$$\Rightarrow \sigma_{\Pi} = (1 - \lambda)\sigma_{1}$$

$$\Rightarrow \lambda = 1 - \frac{\sigma_{\Pi}}{\sigma_{1}}$$

Thus

$$R_{\Pi} = \left(1 - \frac{\sigma_{\Pi}}{\sigma_{1}}\right) R_{0} + \frac{\sigma_{\Pi}}{\sigma_{1}} R_{1} = R_{0} + \sigma_{\Pi} \left(\frac{R_{1} - R_{0}}{\sigma_{1}}\right)$$

A straight line of slope $(R_1 - R_0)/\sigma_1$ as required.

Now the CML is just the straight line through the risk free return R_0 at σ_{Π} which is tangent to the boundary of the (convex) opportunity slope; obviously therefore it is the line that passes through $(R_0, 0)$ and some risky portfolio that has positive slope.

Now we have to maximize $\theta = (R_{\Pi} - R_0)/\sigma_{\Pi}$ over all possible risky portfolios where

$$\Pi = X_1S_1 + X_2S_2 + X_3S_3$$
with
$$X_1 + X_2 + X_3 - 1.$$

Now

$$R_{\mathrm{II}} = X_1 R_1 + X_2 R_2 + X_3 R_3 = \frac{1}{100} (8X_1 + 10X_2 + 12X_3)$$

and

$$\sigma_{\Pi} = (X_1^2 \sigma_1^2 + 2X_1 X_2 \sigma_{12} + X_2^2 \sigma_2^2 + 2X_1 X_3 \sigma_{13} + X_3^2 \sigma_3^2 + 2X_2 X_3 \sigma_{23})^{\frac{1}{2}}$$

$$= (X_1^2 + 8X_1X_2 + 6X_2^2 + 8X_3^2 + 4X_2X_3)^{\frac{1}{2}} \left(\frac{10^{\frac{1}{2}}}{100}\right)$$
$$= 10^{\frac{1}{2}} \frac{\alpha^{\frac{1}{2}}}{100} \text{ say.}$$

Now we have to maximize $\theta = \frac{(8-5)X_1 + (10-5)X_2 + (12-5)X_3}{\alpha^{1/2}}$

i.e.
$$\theta = \frac{3X_1 + 5X_2 + 7X_3}{\alpha^{1/2}}$$
.

Let $3X - 1 + 5X_2 + 7X_3 = \beta$. Then

$$\frac{\partial \theta}{\partial X_1} = \frac{3\alpha^{1/2} - \beta \frac{1}{2}\alpha^{-1/2}(16X_1 + 8X_2)}{\alpha} = 0$$

$$\frac{\partial \theta}{\partial X_2} = \frac{5\alpha^{1/2} - \beta \frac{1}{2}\alpha^{-1/2}(8X_1 + 12X_2 + 4X_3)}{\alpha} = 0$$

$$\frac{\partial \theta}{\partial X_3} = \frac{7\alpha^{1/2} - \beta \frac{1}{2}\alpha^{-1/2}(16X_3 + 4X_2)}{\alpha} = 0$$

(n.b. factors of 10 not important)

Let $\beta X_i/\alpha^2 = z_i$ (using the usual trick) then

$$3 = 8z_1 + 4z_2$$
 $\Rightarrow z_1 = 3/8 - z_2/2$

$$5 = 4z_1 + 6z_2 + 2z_3$$

$$7 = 2z_2 + 8z_3 \qquad \Rightarrow z_3 = 7/8 - z_2/4$$

$$5 = 4z_1 + 6z_2 + 2z_3$$

$$7 = 2z_2 + 8z_3 \Rightarrow z_3 = 7/8 - z_2/4$$

$$\Rightarrow 5 - \frac{3}{2} = -2z_2 + 6z_2 + \frac{7}{4} - z_2/2 \quad z + 2 = \frac{1}{2}$$
Thence $z_1 = \frac{1}{8}$, $z_3 = \frac{3}{4}$.
Now $\sum X_i = 1$

$$\Rightarrow \frac{\beta}{\alpha^2} = \sum z_i = \frac{11}{8}$$

Thus

$$X_1 = \frac{1}{11}$$

$$X_2 = \frac{4}{11}$$

$$X_3 = \frac{6}{11}$$

Thence
$$R_{\Pi} = \frac{1}{100} \left(\frac{8}{11} + \frac{40}{11} + \frac{77}{11} \right) = \frac{120}{11} \% \sim 10.91\%$$

$$\frac{100^2}{10}\sigma_{\Pi}^2 = \frac{8}{121} + \frac{32}{121} + \frac{96}{121} + \frac{8.36}{121}
= \frac{520}{121}
\Rightarrow \sigma_{\Pi} = \left(\sqrt{\frac{5200}{121}}\right) \frac{1}{100}
\theta = \frac{\frac{120}{11} - \frac{500}{100}}{\frac{100}{100}\sqrt{\frac{5200}{121}}}
= \sqrt{\frac{\sqrt{13}}{4}} \sim 0.90138$$