QUESTION An area A is enclosed between the curve $y=x^{\frac{1}{3}}$, the x-axis and the lines $x=0$ and $x=8$.
(i) Find the magnitude of A.
(ii) Calculate the coordinates of the centroid of A.
(iii) Find the volume generated when A is rotated about the y-axis.

ANSWER
DIAGRAM
(i) $A=\int_{0}^{8} y d x=\int_{0}^{8} x^{\frac{1}{3}} d x=\left[\frac{x^{\frac{4}{3}}}{\frac{4}{3}}\right]_{0}^{8}=\frac{3}{4}\left(8^{\frac{4}{3}}-0\right)=\frac{3}{4}\left(2^{4}\right)=12$
(ii) The coordinates of the centroid are (\bar{x}, \bar{y}).
$A \bar{x}=\int_{0}^{8} x y d x=\int_{0}^{8} x^{\frac{4}{3}} d x=\left[\frac{x^{\frac{7}{3}}}{\frac{7}{3}}\right]_{0}^{8}=\frac{3}{7}\left(8^{\frac{7}{3}}\right)=\frac{3}{7}\left(2^{7}\right)$
therefore $\bar{x}=\frac{3(128)}{7(12)}=\frac{32}{7}$
$A \bar{y}=\int_{0}^{8} \frac{1}{2} y^{2} d x=\int_{0}^{8} \frac{1}{2} x^{\frac{2}{3}} d x=\frac{1}{2}\left[\frac{x^{\frac{5}{3}}}{\frac{5}{3}}\right]_{0}^{8}$
i.e. $A \bar{y}=\frac{3}{10}\left(8^{\frac{5}{3}}\right)=\frac{3(32)}{10}$

Therefore $\bar{y}=\frac{3(32)}{10(12)}=\frac{4}{5}$
(iii) When B is rotated about the y-axis the resulting volume is given by $\int_{0}^{2} \pi x^{2} d y=\int_{0}^{2} \pi y^{6} d y=\pi\left[\frac{y^{7}}{7}\right]_{0}^{2}=\frac{128 \pi}{7}$
Hence the volume when A rotated is that of a cylinder - the above volume, i.e.

$$
\left(\pi 8^{2}\right) 2-\frac{128 \pi}{7}=128 \pi-\frac{128 \pi}{7}=128 \pi \times \frac{6}{7}=\frac{768 \pi}{7}(=344.68)
$$

