QUESTION

A function $f(x)$ is defined by

$$
f(x)=\frac{x^{2}-2}{x^{2}-1}
$$

(i) Determine the nature of any stationary points of the function.
(ii) Sketch the graph of $f(x)$ showing clearly any stationary points and asymptotes.
[Note: All the working necessary to obtain your answer must be clearly shown.]

ANSWER
$f(x)=\frac{x^{2}-2}{x^{2}-1}$
(i) $\frac{d f}{d x}=\frac{\left(x^{2}-1\right)(2 x)-\left(x^{2}-2\right)(2 x)}{\left(x^{2}-1\right)^{2}}=\frac{2 x\left(x^{2}-1-x^{2}+2\right)}{\left(x^{2}-1\right)^{2}}=\frac{2 x}{\left(x^{2}-1\right)^{2}}$

Hence there is only one stationary point at $x=0$

$$
\begin{aligned}
\frac{d^{2} f}{d x^{2}} & =\frac{\left(x^{2}-1\right)^{2} 2-2 x\left(2\left(x^{2}-1\right)(2 x)\right)}{\left(x^{2}-1\right)^{4}} \\
& =\frac{\left(x^{2}-1\right)\left\{2\left(x^{2}-1\right)-8 x^{2}\right\}}{\left(x^{2}-1\right)^{4}} \\
& =\frac{\left(x^{2}-1\right)\left(-6 x^{2}-2\right)}{\left(x^{2}-1\right)^{4}} \\
& =-2 \frac{\left(1+3 x^{2}\right)}{\left(x^{2}-1\right)^{3}} \\
\left.\frac{d^{2} f}{d x^{2}}\right|_{x=0}=-\frac{2}{(-1)^{3}} & =2>0 \text { therefore } x=0 \text { is a minimum. }
\end{aligned}
$$

(ii) Clearly f becomes undefined when $x^{2}-1=0$, so $x= \pm 1$ are the asymptotes. The function is even, since $f(-x)=\frac{(-x)^{2}-2}{(-x)^{2}-1}=\frac{x^{2}-2}{x^{2}-1}=f(x)$ $f(0)=\frac{-2}{-1}=2$ therefore the minimum value of the function f is 2 $f(x)=0$ when $x^{2}=2, x= \pm \sqrt{2}$

As $x \rightarrow+\infty, f(x)=\frac{1-\frac{2}{x^{2}}}{1-\frac{1}{x^{2}}} \rightarrow \frac{1}{1}=1$, an asymptote
As $x \rightarrow-\infty, f \rightarrow 1$ (same as above, or by the symmetry of even functions)
$\frac{d^{2} f}{d x^{2}}=-\frac{2\left(1+3 x^{2}\right)}{\left(x^{2}-1\right)^{3}} \neq 0$ for any x, therefore there is no point of inflexion.
$x=1^{+}, f=\frac{(-)}{(+)}=(-)$
$x=1^{-}, f=\frac{(-)}{(-)}=(+)$
$f=\frac{x^{2}-2}{x^{2}-1}=\frac{x^{2}-1-1}{x^{2}-1}=1-\frac{1}{x^{2}-1}$ therefore $f<1$ as $x \rightarrow+\infty$
We can complete the graph since f is even (symmetric about the y axis).

