Vector Calculus
 Grad, Div and Curl Identities

Question

Verify that $\underline{F} \times \underline{G}$ is solenoidal for smooth and conservative vector fields \underline{F} and \underline{G}. Also find a vector potential for $\underline{F} \times \underline{G}$.
Answer

$$
\begin{aligned}
\underline{F} & =\nabla \phi \\
\text { and } \underline{G} & =\nabla \psi \\
\Rightarrow \nabla \times \underline{F} & =\underline{0} \\
\text { and } \nabla \times \underline{G} & =\underline{0} \\
\Rightarrow \nabla \bullet(\underline{F} \times \underline{G}) & =(\nabla \times \underline{F}) \bullet \underline{G}+\underline{F} \bullet(\nabla \times \underline{G}) \\
& =0
\end{aligned}
$$

and so $\underline{F} \times \underline{G}$ is solenoidal.
It can be seen that

$$
\nabla \times(\phi \nabla \psi)=\nabla \phi \times \nabla \psi=\underline{F} \times \underline{G} .
$$

so $\phi \nabla \psi$ is a vector potential for $\underline{F} \times \underline{G}$, as is $-\psi \nabla \phi$.

