Vector Calculus Grad, Div and Curl Identities

Question

Verify that $\underline{F} \times \underline{G}$ is solenoidal for smooth and conservative vector fields \underline{F} and \underline{G} . Also find a vector potential for $\underline{F} \times \underline{G}$.

Answer

$$\frac{F}{\text{and } \underline{G}} = \nabla \phi
\text{and } \underline{G} = \nabla \psi
\Rightarrow \nabla \times \underline{F} = \underline{0}
\text{and } \nabla \times \underline{G} = \underline{0}
\Rightarrow \nabla \bullet (\underline{F} \times \underline{G}) = (\nabla \times \underline{F}) \bullet \underline{G} + \underline{F} \bullet (\nabla \times \underline{G})
= \underline{0}$$

and so $\underline{F} \times \underline{G}$ is solenoidal.

It can be seen that

$$\nabla \times (\phi \nabla \psi) = \nabla \phi \times \nabla \psi = \underline{F} \times \underline{G}.$$

so $\phi \nabla \psi$ is a vector potential for $\underline{F} \times \underline{G}$, as is $-\psi \nabla \phi$.