Vector Calculus
 Grad, Div and Curl Identities

Question

It is given that $\underline{r}=x \underline{i}+y \underline{j}+z \underline{k}$, with $r=|\underline{r}|$. It is also given that f is a differentiable function of one variable.
Show that

$$
\nabla \bullet(f(r) \underline{r})=r f^{\prime}(r)+3 f(r)
$$

and find $f(r)$ if it is assumed that $f(r) \underline{r}$ is solenoidal for $r \neq 0$.
Answer

$$
\begin{aligned}
\nabla \bullet(f(r) \underline{r}) & =(\nabla f(r)) \bullet \underline{r}-f(r)(\nabla \bullet \underline{r}) \\
& =f^{\prime}(r) \frac{\underline{r} \bullet \underline{r}}{r}+3 f(r) \\
& =r f^{\prime}(r)+3 f(r)
\end{aligned}
$$

If $f(r) \underline{r}$ is solenoidal, then $\nabla \bullet(f(r) \underline{r})=0$, so that $u=f(r)$ will satisfy

$$
\begin{aligned}
r \frac{d u}{d r}+3 u & =0 \\
\frac{d u}{u} & =-\frac{3 d r}{r} \\
\ln |u| & =-3 \ln |r|+\ln |C| \\
u & =C r^{-3} \\
\Rightarrow f(r) & =C r^{-} 3
\end{aligned}
$$

for an arbitrary constant C.

