Vector Calculus Grad, Div and Curl Identities

Question

If the field lines of the vector field $\underline{F}(x, y, z)$ are parallel straight lines, what does this tell you about $\operatorname{div}\underline{F}$ and $\operatorname{curl}\underline{F}$?

Answer

If the field lines are parallel straight lines, in the direction of the non-zero vector \underline{a} , where \underline{a} is a constant, then

$$\underline{F}(x, y, z) = \phi(x, y, z)\underline{a}$$

with ϕ being a smooth scalar field. It is also given that

$$\operatorname{div} \underline{F} = \operatorname{div}(\phi \underline{a}) = \nabla \phi \bullet \underline{a}$$
$$\operatorname{curl} \underline{F} = \operatorname{curl}(\phi \underline{a}) = \nabla \phi \times \underline{a}.$$

As $\nabla \phi$ is an arbitrary gradient, so $\operatorname{div} \underline{F}$ can take any value. However, $\operatorname{curl} \underline{F}$ will be perpendicular to \underline{a} , and so also perpendicular to \underline{F} .