Vector Calculus Grad, Div and Curl Identities

Question

If the field lines of the vector field $\underline{F}(x, y, z)$ are parallel straight lines, what does this tell you about $\operatorname{div} \underline{F}$ and curl \underline{F} ?
Answer
If the field lines are parallel straight lines, in the direction of the non-zero vector \underline{a}, where \underline{a} is a constant, then

$$
\underline{F}(x, y, z)=\phi(x, y, z) \underline{a}
$$

with ϕ being a smooth scalar field. It is also given that

$$
\begin{aligned}
\operatorname{div} \underline{F} & =\operatorname{div}(\phi \underline{a})=\nabla \phi \bullet \underline{a} \\
\operatorname{curl} \underline{F} & =\operatorname{curl}(\phi \underline{a})=\nabla \phi \times \underline{a} .
\end{aligned}
$$

As $\nabla \phi$ is an arbitrary gradient, so $\operatorname{div} \underline{F}$ can take any value. However, curl \underline{F} will be perpendicular to \underline{a}, and so also perpendicular to \underline{F}.

