Vector Calculus
 Grad, Div and Curl Identities

Question

It is given that ϕ and ψ are scalar fields and \underline{F} and \underline{G} are vector fields. They are all assumed to be smooth functions. Prove the following identity

$$
\nabla \bullet(\underline{F} \times \underline{G})=(\nabla \times \underline{F}) \bullet \underline{G}-\underline{F} \bullet(\nabla \times \underline{G})
$$

Answer

$$
\begin{aligned}
\nabla \bullet(\underline{F} \times \underline{G}) & =\frac{\partial}{\partial x}\left(F_{2} G_{3}-F_{3} G_{2}+\cdots\right. \\
& =\frac{\partial F_{2}}{\partial x} G_{3}+F_{2} \frac{\partial G_{3}}{\partial x}-\frac{\partial F_{3}}{\partial x} G_{2}-F_{3} \frac{\partial G_{2}}{\partial x}+\cdots \\
& =(\nabla \times \underline{F}) \bullet \underline{G}-\underline{F} \bullet(\nabla \times \underline{G})
\end{aligned}
$$

