Vector Calculus
 Grad, Div and Curl Identities

Question

It is given that ϕ and ψ are scalar fields and \underline{F} and \underline{G} are vector fields. They are all assumed to be smooth functions. Prove the following identity

$$
\nabla \bullet(\phi \underline{F})=(\nabla \phi) \bullet \underline{F}+\phi(\nabla \bullet \underline{F})
$$

Answer

$$
\begin{aligned}
\nabla \bullet(\phi \underline{F}) & =\frac{\partial}{\partial x}\left(\phi F_{1}\right)+\frac{\partial}{\partial y}\left(\phi F_{2}\right)+\frac{\partial}{\partial z}\left(\phi F_{3}\right) \\
& =\frac{\partial \phi}{\partial x} F_{1}+\phi \frac{\partial F_{1}}{\partial x}+\cdots+\frac{\partial \phi}{\partial z} F_{3}+\phi \frac{\partial F_{3}}{\partial z}+\cdots \\
& =(\nabla \phi) \bullet \underline{F}+\phi(\nabla \bullet \underline{F})
\end{aligned}
$$

