Vector Calculus Grad, Div and Curl Identities

Question

It is given that ϕ and ψ are scalar fields and \underline{F} and \underline{G} are vector fields. They are all assumed to be smooth functions. Prove the following identity

$$\nabla \bullet (\phi \underline{F}) = (\nabla \phi) \bullet \underline{F} + \phi (\nabla \bullet \underline{F})$$

Answer

$$\nabla \bullet (\phi \underline{F}) = \frac{\partial}{\partial x} (\phi F_1) + \frac{\partial}{\partial y} (\phi F_2) + \frac{\partial}{\partial z} (\phi F_3)$$

$$= \frac{\partial \phi}{\partial x} F_1 + \phi \frac{\partial F_1}{\partial x} + \dots + \frac{\partial \phi}{\partial z} F_3 + \phi \frac{\partial F_3}{\partial z} + \dots$$

$$= (\nabla \phi) \bullet \underline{F} + \phi (\nabla \bullet \underline{F})$$