Vector Calculus
 Grad, Div and Curl Identities

Question

It is given that $\operatorname{div} \underline{F}=0$ in a domain D, of which any point P can be joined to the origin by a straight line segment in $D . \underline{r}$ is a parametrization of the line segment from the origin to (x, y, z) in D, with

$$
\underline{r}=t x \underline{i}+t y \underline{j}+t z \underline{k}, \quad(0 \leq t \leq 1) .
$$

\underline{G} is given by

$$
\underline{G}(x, y, z)=\int_{0}^{1} t \underline{F}(\underline{r}(t)) \times \frac{d \underline{r}}{d t} d t .
$$

Show that $\operatorname{curl} \underline{G}=\underline{F}$ throughout D.

Answer

Let $\underline{v}=x \underline{i}+y \underline{j}+z \underline{k}$. As the line segment lies inside D, so $\operatorname{div} \underline{F}=0$ on the path.
We have

$$
\begin{aligned}
\underline{G}(x, y, z) & =\int_{0}^{1} t \underline{F}(\underline{r}(t)) \times \underline{v} d t \\
& =\int_{0}^{1} t \underline{F}(\xi(t), \eta(t), \zeta(t)) \times \underline{v} d t
\end{aligned}
$$

With $\xi=t x, \eta=t y$ and $\zeta=t z$. So the first component of curl \underline{G} is

$$
\begin{aligned}
(\operatorname{curl} \underline{G})_{1}= & \int_{0}^{1} 1^{1} t(\operatorname{curl}(\underline{F} \times \underline{v}))_{1} d t \\
= & \int_{0}^{1} t\left(\frac{\partial}{\partial y}(\underline{F} \times \underline{v})_{3}-\frac{\partial}{\partial z}(\underline{F} \times \underline{v})_{2}\right) d t \\
= & \int_{0}^{1} t\left(\frac{\partial}{\partial y}\left(F_{1} y-F_{2} x\right)-\frac{\partial}{\partial z}\left(F_{3} x-F_{1} z\right)\right) d t \\
= & \int_{0}^{1}\left(t F_{1}+t^{2} y \frac{\partial F_{1}}{\partial \eta}-t^{2} x \frac{\partial F_{2}}{\partial \eta}-t^{2} x \frac{\partial F_{3}}{\partial \zeta}\right. \\
& \left.+t F_{1}+t^{2} z \frac{\partial F_{1}}{\partial \zeta}\right) d t \\
= & \int_{0}^{1}\left(2 t F-1+t^{2} x \frac{\partial F_{1}}{\partial \xi}+t^{2} y \frac{\partial F_{1}}{\partial \eta}+t^{2} z \frac{\partial F_{1}}{\partial \zeta}\right) d t .
\end{aligned}
$$

With the last line using the fact that $\operatorname{div} \underline{F}=0$ to replace $i t^{2} x \frac{\partial F_{2}}{\partial \eta}-t^{2} x \frac{\partial F_{3}}{\partial \zeta}$ with $t^{2} x \frac{\partial F_{1}}{\partial \xi}$.

So

$$
\begin{aligned}
(\operatorname{curl} \underline{G})_{1} & =\int_{0}^{1} \frac{d}{d t}\left(t^{2} F_{1}(\xi, \eta, \zeta)\right) d y \\
& =\left.t^{2} F_{1}(t x, t y, t z)\right|_{0} ^{1} \\
& =F_{1}(x, y, z)
\end{aligned}
$$

Similar arguements will show that $\left.(\operatorname{curl} \underline{G})_{2}=F_{2}\right)$ and $(\operatorname{curl} \underline{G})_{3}=F_{3}$.

$$
\Rightarrow \operatorname{curl} \underline{G}-\underline{F} .
$$

